C.E.M.TUITION

Name:

Review Paper No. 1

Relations & Functions

Year 11 - 2 Unit

Find the largest possible domain of each of the following functions.

(i)
$$y = \sqrt{1+2x}$$
 (ii) $y = \frac{1}{\sqrt{2-x}}$

(ii)
$$y = \frac{1}{\sqrt{2} - \frac{1}{2}}$$

(iii)
$$y = \sqrt{1+2x} + \frac{1}{\sqrt{2-x}}$$

2. Use the graph y = |x| to sketch the graphs

(i)
$$y = |x-1|$$

(ii)
$$y = |x| - 1$$

- 3. Show that the function $f(x) = x^3 x$ is odd. Sketch the graph of the function and find the values of x for which f(x) is negative.
- 4. Sketch the graph of the function $y = \frac{x+1}{x+2}$ and state its domain and range.

Sketch the graph of the function

$$f(x) = \begin{bmatrix} 4 & , & x \le 0 \\ (x-2)^2 & , & 0 < x \le 3 \\ 1 & , & x > 3 \end{bmatrix}$$

Find the range of the function.

On the same axes sketch the graphs

$$y = x^2 - 1$$
 and $y = \frac{-1}{x}$. By

inspection of the graph, state the number of solutions of

$$x^2 - 1 = \frac{-1}{x}$$
. (Do not attempt to

 $x^2 - 1 = \frac{-1}{x}$. (Do not attempt to find these solutions or the intersection points of the graphs.)

- 7. Sketch the graph of the circle $(x-3)^2 + (y-4)^2 = 25$. Shade the region in the first quadrant contained on or inside the circle, and state the three inequalities satisfied simultaneously by the points in the shaded region.
- 8. On the same axes sketch the graphs $y = \sqrt{4 x^2}$ and y = x 2. Shade the region where $y \le \sqrt{4 x^2}$, $x \ge 0$ and $y \ge x 2$.

1. (i) $\sqrt{()}$ is only defined for $() \ge 0$. Hence the domain of the function $y = \sqrt{1+2x}$ is given by

$$1 + 2x \ge 0$$
$$2x \ge -1$$
$$x \ge -\frac{1}{2}$$

Hence domain is $\{x: x \ge -\frac{1}{2}\}$.

(ii) $\frac{1}{\sqrt{(\)}}$ is only defined for $(\)>0$. Hence the domain of the function $y = \frac{1}{\sqrt{2-x}}$ is given by 2-x>0

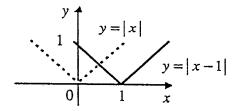
$$2-x>0$$

$$x<2$$

Hence domain is $\{x: x < 2\}$.

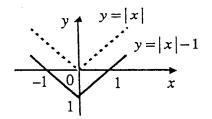
- (iii) Since both the restrictions $x \ge -\frac{1}{2}$ and x < 2 must be satisfied if both terms are to be defined, the domain of $y = \sqrt{1+2x} + \frac{1}{\sqrt{2-x}}$ is $\{x: -\frac{1}{2} \le x < 2\}$.
 - 2. (i) The graph y = |x-1| has the same shape as y = |x|, with its vertex at x such that x-1=0 rather than x=0. Hence the vertex has coordinates (1,0) and the graph of y = |x| is translated 1 unit to the right.

Figure 14.17



(ii) The graph y = |x| - 1 has the same shape as y = |x|, but is translated downwards by 1 unit since every y value is decreased by 1.

Figure 14.18



3. f is an odd function if f(-x) = -f(x).

$$f(x) = x^3 - x$$

$$f(-x) = (-x)^3 - (-x)$$

$$= -x^3 + x$$

$$= -(x^3 - x)$$

$$= -f(x)$$

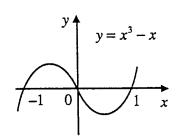
 \therefore f(x) is an odd function.

y-intercept:
$$x = 0 \Rightarrow y = 0$$

$$x\text{-intercepts: } y = 0 \Rightarrow \begin{cases} x^3 - x = 0 \\ x(x^2 - 1) = 0 \\ x(x - 1)(x + 1) = 0 \\ x = 0, \quad x = \pm 1 \end{cases}$$

Consider the function f(x) for x > 0. For 0 < x < 1, $x^3 < x \Rightarrow f(x) < 0$. For x > 1, $x^3 > x \Rightarrow f(x) > 0$. Since f(x) is an odd function, the graph y = f(x) has point symmetry in the origin, and we can use the graph of y = f(x) for x > 0 to sketch y = f(x) for x < 0.

Figure 14.19



By inspection of the graph, f(x) < 0 for x < -1 or 0 < x < 1.

4. Graphs of functions of the form

$$y = \frac{ax + b}{cx + d}$$
 are always hyperbolas. To graph such a function, we need to find the vertical and horizontal asymptotes.

Consider
$$y = \frac{x+1}{x+2}$$
.

vertical asymptote: $y \rightarrow \infty$ as $x \rightarrow -2$ $\therefore x = -2$ is a vertical asymptote. horizontal asymptote:

As
$$x \to \infty$$
, $y = \frac{x+1}{x+2} = \frac{1+\frac{1}{x}}{1+\frac{2}{x}} \to \frac{1+0}{1+0}$.

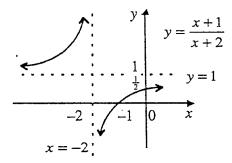
Hence $y \to 1$ as $x \to \infty$, and y = 1 is a horizontal asymptote.

To decide in which quadrants relative to these asymptotes the hyperbola lies, we can find the intercepts on the coordinate axes.

y-intercept:
$$x = 0 \Rightarrow y = \frac{1}{2}$$

x-intercept: $y = 0 \Rightarrow x = -1$

Figure 14.20



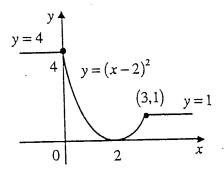
By inspection of the graph, $y = \frac{x+1}{x+2}$ has domain $\{x : x \neq -2\}$, range $\{y : y \neq 1\}$.

5. The graph of the function

$$f(x) = \begin{bmatrix} 4 & , & x \le 0 \\ (x-2)^2 & , & 0 < x \le 3 \\ 1 & , & x > 3 \end{bmatrix}$$

consists of a section of the straight line y = 4 for $x \le 0$, the section of the concave up parabola $y = (x-2)^2$ lying between the points (0, 4) and (3, 1) with vertex at (2, 0), and the section of straight line y = 1 for x > 3.

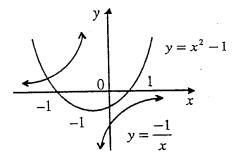
Figure 14.21



By inspection of the graph, the range of the function f is $\{y: 0 \le y \le 4\}$.

6. $y = \frac{-1}{x}$ is a hyperbola with the coordinate axes as asymptotes. $xy = -1 \Rightarrow x$ and y have different signs, hence this hyperbola lies in the second and fourth quadrants. $y = x^2 - 1$ is the same shape as the parabola $y = x^2$ translated downwards by 1 unit, with intercepts on the coordinate axes given by y-intercept: $x = 0 \Rightarrow y = -1$ x-intercepts: $y = 0 \Rightarrow x = \pm 1$

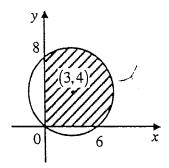
Figure 14.22



The solutions of the equation $x^2 - 1 = \frac{-1}{x}$ are the x-coordinates of the intersection points of the graphs $y = x^2 - 1$ and $y = \frac{-1}{x}$. Since these graphs intersect exactly once, the equation has exactly one solution.

7. The circle $(x-3)^2 + (y-4)^2 = 25$ has centre (3, 4) and radius 5, and passes through (0, 0), (0, 8) and (6, 0).

Figure 14.23



Points in the shaded region satisfy the three inequalities $x \ge 0$, $y \ge 0$ and $(x-3)^2 + (y-4)^2 \le 25$.

8. $y = \sqrt{4 - x^2}$ is the upper semicircle $x^2 + y^2 = 4$, $y \ge 0$ with centre (0, 0) and radius 2. y = x - 2 is the straight line with y-intercept -2 and x-intercept 2.

Test
$$(0,0)$$
:
 $y = \sqrt{4-x^2}$
 $0 < \sqrt{4-0}$
 \Rightarrow
 $y \le \sqrt{4-x^2}$
 \Rightarrow

$$\begin{vmatrix} y = x - 2 \\ 0 > 0 - 2 \end{vmatrix} \Rightarrow \begin{cases} (0, 0) \text{ lies in region} \\ y \ge x - 2 \end{aligned}$$

 $y \le \sqrt{4-x^2}$ has domain $-2 \le x \le 2$. Hence points in the required region satisfy $-2 \le x \le 2$, lie below the semicircle $y = \sqrt{4-x^2}$ and above the line y = x-2. All boundaries are included in the region and are shown as firm lines or curves.

Figure 14.24

