C.E.M.TUITION

Name :_____

Review of Rules & Formulae I Algebra, Number Plane & Trigonometry

2 Unit

TUTOR: PETER OOI

PHONE: 9666-3331

FAX: 9316-4996

ALGEBRA:

Formulae:

- [1] Expand $(a+b)^2$
- [2] Expand $(a-b)^2$
- [3] Expand (a+b)(a-b)
- [4] Factorize $a^2 b^2$
- [5] Factorize $a^3 b^3$
- [6] Factorize $a^3 + b^3$

Examples:

- [1] Expand $(x+2y)^2$
- [2] Expand $(2x-3y)^2$
- [3] Expand $(\sqrt{3} + 2)(\sqrt{3} 2)$
- [4] Factorize $4x^2 9y^2$
- [5] Factorize $x^3 27$
- [6] Factorize $2p^3 + 54q^3$

NUMBER PLANE:

Formulae:

If P and Q are the points (x_1, y_1) and (x_2, y_2) respectively, write down the formula for:

[1] Distance PQ =

[2] Mid-point of PQ =

[3] Gradient of PQ =

[4] Equation of PQ is

[5] The distance between (x_1, y_1) and the line Ax + By + C = 0 is

Given that : $L_1: y = m_1x + c_1$ and $L_2: y = m_2x + c_2$, what is the relationship between m_1 and m_2 if

 $[6] L_1 || L_2$

[7] $L_1 \perp L_2$

Examples:

If P(2, 1) and Q(-6, 5), find the

[1] Distance PQ

[2] Mid-point of PQ

[3] Gradient of PQ

[4] Equation of PQ

[5] The distance between the point (3, 4) and the line PQ

[6] equation of the line through (0, -2) and parallel to PQ

[7] equation of the line through (0, -2) and perpendicular to PQ.

[8] perpendicular distance from (0, -2) to PQ.

TRIGONOMETRY:

Formulae:

- [1] Simplify $\sin \theta \times \csc \theta$
- [2] Simplify $\cos \theta \times \sec \theta$
- [3] Simplify $\tan\theta \times \cot\theta$
- [4] $\cos^2\theta + \sin^2\theta =$
- $[5] 1 + \tan^2\theta =$
- [6] $\cot^2 \theta + 1 =$
- [7] The ratios of 30° , 45° and 60° . Fill in the lengths of all the sides of these triangles.

[8] In any $\triangle ABC$, fill in the sides with lengths a, b and c units.

[a] State the Sine rule:

[b] State the Cosine rule:

[c] State the Area rule:

[9] Simplify:
$$\sin\theta \times \frac{1}{\cos(90-\theta)}$$

[10] Simplify:
$$\sec \theta \times \frac{1}{\csc(90-\theta)}$$

[11] Simplify:
$$\tan \theta \times \frac{1}{\cot(90-\theta)}$$

[12] A.S.T.C. Rule

[a]
$$\cos(180 - \theta) =$$

[b]
$$\sin(180 + \theta) =$$

[c]
$$\tan(360 - \theta) =$$

[d]
$$\sin(90 + \theta) =$$

[e]
$$\cos(270 - \theta)$$

Examples:

- [1] Simplify $\sin 40^{\circ} \times \csc 40^{\circ}$
- [2] Simplify $\cos 50^0 \times \sec 50^0$
- [3] Simplify $\tan 70^0 \times \cot 70^0$
- $[4]\cos^2 80^0 + \sin^2 80^0 =$
- [5] Simplify $\sec^2 x \tan^2 x$
- [6] Simplify $\sqrt{\cot^2 \alpha + 1}$

- [7] Evaluate:
- [a] $\sin 45^{\circ} \times \cos 45^{\circ}$

- [8] Evaluate:
- [a] $\cos 135^{\circ}$
- [b] tan 240°
- [c] cosec330⁰
- [d] $\cos(-150^{\circ})$
- [e] tan 510⁰

[f] sec²225⁰

Solutions:

Page 1:

[1]
$$a^2 + 2ab + b^2$$
 [2] $a^2 - 2ab + b^2$ [3] $a^2 - b^2$

[4]
$$(a+b)(a-b)$$
 [5] $(a-b)(a^2+ab+b^2)$ [6] $(a+b)(a^2-ab+b^2)$

Page 2:

[1]
$$x^2 + 4xy + 4y^2$$
 [2] $4x^2 - 12xy + 9y^2$ [3] -1

[4]
$$(2x+3y)(2x-3y)$$
 [5] $(x-3)(x^2+3x+9)$ [6] $2(p+3q)(p^2-3pq+9q^2)$

Page 3:

[1]
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
 [2] $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ [3] $\frac{y_2-y_1}{x_2-x_1}$

[4]
$$y - y_1 = m(x - x_1)$$
 where $m = \frac{y_2 - y_1}{x_2 - x_1}$ [5] $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

[6]
$$m_1 = m_2$$
 [7] $m_1 \times m_2 = -1$

Page 4:

[1]
$$4\sqrt{5}$$
 [2] (-2,3) [3] $-\frac{1}{2}$ [4] $x + 2y - 4 = 0$ [5] $\frac{7\sqrt{5}}{5}$

<u>Page 5:</u>

[6]
$$x + 2y + 4 = 0$$
 [7] $2x - y - 2 = 0$ [8] $\frac{8\sqrt{5}}{5}$

Page 6:

[1] 1 [2] 1 [3] 1 [4] 1 [5]
$$\sec^2 x$$
 [6] $\csc^2 x$

Page 7:

[8] [a]
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 [b] $a^2 = b^2 + c^2 - 2bc \cos A$ [c] Area= $\frac{1}{2}ab \sin C$

Page 8:

[12] [a]
$$-\cos\theta$$
 [b] $-\sin\theta$ [c] $-\tan\theta$ [d] $\cos\theta$ [e] $-\sin\theta$