C.E.M.TUITION

Review of Rules and Formulae Quadratics, Geometry, A.P's & G.P's

Year 12 - Mathematics

PHONE: 9666-3331

FAX: 9316-4996

MOBILE: 0412 880 475

For corrections refer to pages:

QUADRATICS:

Formulae:

- [1] If $ax^2 + bx + c = 0$, then using the quadratic formula x = 0
- [2] If the roots of above quadratic are α and β , then
- [a] $\alpha + \beta =$
- [b] $\alpha\beta$ =
- [3] The equation with α and β as roots is
- [4] For the quadratic equation $ax^2 + bx + c = 0$,
- [a] What does Δ equal?
- [b] If $\Delta > 0$, then the roots are
- [c] If $\Delta = 0$, then the roots are
- [d] If Δ < 0, then the roots are

- [e] The condition for (in terms of Δ):
- [i] Positive definite if

[ii] Negative definite if

[iii] Indefinite if

Examples:

[1] Solve
$$x^2 + x - 3 = 0$$

[2] If
$$\alpha$$
, β are the roots of $x^2 - 3x + 5 = 0$, find

[a]
$$\alpha + \beta$$

[3] If
$$\sqrt{2} - 1$$
 and $\sqrt{2} + 1$ are roots, find the quadratic equation.

[4] Using the discriminant, Δ, find if the roots are:
[a] real and distinct, [b] real and equal, or [c] unreal for

[i]
$$2x^2 - 5x - 7 = 0$$

[ii]
$$4x^2 - 4x + 1 = 0$$

[iii]
$$3x^2 + x + 1 = 0$$

[iv] Which one of the above parabola is positive definite?

GEOMETRY:

Rules:

In the above diagram, write down a pair of

- [1] corresponding angles
- [2] alternate angles
- [3] cointerior angles
- [4] vertically opposite angles
- [5] adjacent angles

Complete the following with the words "equal" or "supplementary":

- [6] Corresponding angles are
- [7] Alternate angles are
- [8] Cointerior angles are
- [9] Vertically opposite angles are
- [10] Adjacent angles are

Examples:
Find the pronumeral in each case, giving reasons.

SEQUENCE AND SERIES:

Formulae:

- [1] An arithmetic sequence is in the form a, a+d, a+2d, ... Find:
- [a] $T_n =$
- [b] $S_n =$
- [2] A geometric sequence is in the form $a, ar, ar^2, ...$ Find:
- [a] $T_n =$
- [b] $S_n =$

[c] Limiting sum = S_{∞} =

[b] Find T_n

Examples: [1] For the sequence 1, 4, 7, [a] Show that it is arithmetic. [b] Find [i] T_n [ii] Is 61 a term of the sequence? If so, which term is it? [iii] Find S_{21} [2] For the sequence 3, 9, 27, ... [a] Show that it is geometric.

[c] Find the first term that exceeds 1000.

[d] Find S_8

- [3] For the series 0.4 + 0.04 + 0.004 + ...
- [a] Is there a limiting sum and why?
- [b] Find its limiting sum as a rational number.

Solutions:

Page 1:

$$[1] \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad [2] [a] - \frac{b}{a} \quad [b] \frac{c}{a}$$

[3]
$$x^2 - (\alpha + \beta)x + (\alpha\beta)$$
 [4] [a] $b^2 - 4ac$ [b] real and distinct

[4] [a]
$$b^2 - 4ac$$

Page 2:

[e] [i]
$$\Delta < 0, a > 0$$
 [ii] $\Delta < 0, a < 0$

$$[ii] \Delta < 0, a < 0$$

[iii]
$$\Delta > 0$$

Page 3:

[1]
$$x = \frac{-1 \pm \sqrt{13}}{2}$$
 [2] [a] 3 [b] 5 [3] $x^2 - 2\sqrt{2}x + 1 = 0$

$$[3] x^2 - 2\sqrt{2} x + 1 = 0$$

<u>Page 4:</u>

[4] [i] $\Delta = 81$, roots are real, distinct and rational

[ii] $\Delta = 0$, roots are real and equal

[iii] $\Delta = -11$, roots are not real.

[iv] Parabola in part [iii]

<u>Page 5:</u>

[1]
$$a, e, b, f, d, h, c, g$$
 [2] c, e, b, h [3] c, h, b, e

[2]
$$c, e, b, h$$

[3]
$$c, h, b, e$$

[4]
$$a, c; b, d; e, g; h, f$$
 [5] $d, a; c, b; e, f; f, g$ [

Page 6:

$$2x + 114 = 180$$
 (Straight line) $x = 33$

$$2y = 114$$
 (Alternate \angle s, $EF|AD$); $y = 57$

$$z = 2x + y$$
 (Exterior \angle of $\triangle BEC$); $z = 123$

Page 7:

[1] [a]
$$a + (n-1)d$$
 [b] $\frac{n}{2}[2a + (n-1)d]$

[2] [a]
$$ar^{n-1}$$
 [b] $\frac{a(r^n-1)}{r-1}$

[c]
$$\frac{a}{1-r}$$

Page 8:

[1] [a]
$$d = 4 - 1 = 7 - 4 = 3$$

[1] [a]
$$d = 4 - 1 = 7 - 4 = 3$$
 [b] [i] $3n - 2$ [ii] Yes, $n = 21$ [iii] 651

[2] [a]
$$r = \frac{9}{3} = \frac{27}{9} = 3$$
 [b] 3^n

Page 9:

[c]
$$n = 7$$
 [d] 9840

[3] [a] Yes, because
$$-1 < r < 1$$

[b]
$$\frac{4}{9}$$