C.E.M.TUITION

Name	:

Review of Rules and Formulae Derivatives, integrals, volumes, radian measures, logarithms & parabolas

Year 12 - Mathematics

PHONE: 9666-3331

FAX: 9316-4996

MOBILE: 0412 880 475

For corrections refer to pages:

DERIVATIVES:

Formulae and examples:

[1] [a] If
$$y = x^n$$
 then $\frac{dy}{dx} =$

[b] If
$$y = x\sqrt{x}$$
, find $\frac{dy}{dx}$

[2] [a] If
$$y = u \cdot v$$
 then $\frac{dy}{dx} =$

[b] If
$$y = x^2(1-x)^3$$
, find $\frac{dy}{dx}$

[3][a] If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \frac{2x-1}{x^2+1}$$
 find $\frac{dy}{dx}$

[4] [a] If
$$y = e^x$$
 then $\frac{dy}{dx} =$

[b] If
$$y = x \cdot e^x$$
, find $\frac{dy}{dx}$

[5] [a] If
$$y = e^u$$
 then $\frac{dy}{dx} =$

[b] If
$$y = e^{3x-5}$$
, find $\frac{dy}{dx}$

[6] [a] If
$$y = \ln x$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \ln \sqrt{x}$$
 find $\frac{dy}{dx} =$

[7] [a] If
$$y = \ln u$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \ln \sqrt[3]{3x^2 - 7}$$
, find $\frac{dy}{dx}$

[8] If
$$y = \sin x$$
 then $\frac{dy}{dx} =$

[9] [a] If
$$y = \sin u$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \sin(2x + 1)$$
, find $\frac{dy}{dx} =$

[10] [a] If
$$y = \cos u$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \cos x^2$$
, find $\frac{dy}{dx}$

[11] [a] If
$$y = \tan u$$
 then $\frac{dy}{dx} =$

[b] If
$$y = \tan(\sin x)$$
, find $\frac{dy}{dx}$

INTEGRALS:

Formulae and examples:

$$[1] [a] \int x^n dx =$$

[b]
$$\int x \sqrt{x} \ dx =$$

[2] [a]
$$\int e^{ax} dx =$$

[b]
$$\int e^{\pi x} dx =$$

[3] [a]
$$\int e^{f(x)} f'(x) dx =$$

[b] Find
$$\int e^{\cos x} \cdot \sin x \, dx =$$

[4] [a]
$$\int \frac{f'(x)}{f(x)} dx =$$

[b]
$$\int \frac{5x}{x^2+1} dx =$$

[c]
$$\int \frac{x+2}{x^2+4x-9} \, dx =$$

$$[5] \int \sin(2x+1) dx =$$

$$[6] \int \cos(\pi x - 4) dx =$$

$$[7] \int \sec^2 6x \ dx =$$

AREAS AND VOLUMES:

- [1] Volume of solid of revolution about the:
- [a] x-axis from x = a to x = b is given by V =

[b] y-axis from
$$x = c$$
 to $x = d$ is given by $V =$

- [2] Find the volume generated by the revolving the function $y = x^3$ from x = 1 to x = 4
- [a] about the x-axis.

[b] about the y-axis

LOGARITHMS:

[1] [a] If
$$y = a^x$$
 then $x =$

Complete these laws of logarithms:

[2] [a]
$$\log(mn) =$$

[b] Simplify:
$$\log x + \log 2y$$

[3] [a]
$$\log\left(\frac{m}{n}\right) =$$

[b] Simplify:
$$\log p - \log pq$$

[c] Solve for
$$x$$
 if $\log 3 = \log x - \log 2$

- [4] [a] Simplify: $\log x^n =$
- [b] Solve: $2 \log 3 = \log(x+1)$
- [5] If $\log_a b = \frac{\ln b}{\ln a}$, find $\log_4 7$ to 2 decimal places.

RADIAN MEASURE:

- [1] π radians = (in degrees).
- [2] [a] Change $\frac{5\pi}{6}$ radians to degrees
- [b] Change 330° to radians
- [3] [a] Complete the formula for : Arc length, I =
- [b] Find the arc swept by the minute hand, measuring 10 cm, in 16 minutes.
- [4] [a] Complete the formula for : Area of sector, $A_{\text{sector}} =$
- [b] Find the area of sector swept by the same minute hand in 20 minutes

[5] [a] Complete the formula for: Area of minor segment =

[b] Find the area of the minor segment joined by the tips of the minute hand as it sweeps from 0 to 20 minutes.

THE PARABOLA:

Find the focus, vertex and the equation of the directrix of the parabola:

$$[1] x^2 = 25y$$

[2]
$$x^2 + 2x = -8y + 15$$

Solutions:

Page 1:

[1] [a]
$$nx^{n-1}$$
 [b] $\frac{3\sqrt{x}}{2}$ [2] [a] $uv'+vu'$ [b] $x(1-x)^2(2-5x)$

[3] [a]
$$\frac{vu'-uv'}{v^2}$$
 [b] $\frac{-2(x^2-x-1)}{(x^2+1)^2}$

<u>Page 2 :</u>

[4] [a]
$$e^x$$
 [b] $e^x(x+1)$ [5] [a] $e^u \cdot \frac{du}{dx}$ [b] $3e^{3x-5}$

[6] [a]
$$\frac{1}{x}$$
 [b] $\frac{1}{2x}$ [7] [a] $\frac{1}{u} \cdot \frac{du}{dx}$ [b] $\frac{2x}{3x^2-7}$

<u>Page 3:</u>

[8]
$$\cos x$$
 [9] [a] $\cos u \times u'$ [b] $2\cos(2x+1)$

[10] [a]
$$-\sin u \times u$$
, [b] $-2x \sin x^2$

[11] [a]
$$\sec^2 u \times u$$
, [b] $\cos x \cdot \sec^2 (\sin x)$

Page 4:

[1] [a]
$$\frac{x^{n+1}}{n+1} + c$$
 [b] $\frac{2x^{\frac{5}{2}}}{5} + c$

[2] [a]
$$\frac{e^{ax}}{a} + c$$
 [b] $\frac{e^{\pi x}}{\pi} + c$

[3] [a]
$$e^{f(x)} + c$$
 [b] $-e^{\cos x} + c$

[4] [a]
$$\ln f(x) + c$$
 [b] $\frac{5}{2} \ln(x^2 + 1) + c$ [c] $\frac{1}{2} \ln(x^2 + 4x - 9) + c$

Page 5:

[5]
$$\frac{-\cos(2x+1)}{2} + c$$
 [6] $\frac{\sin(\pi x - 4)}{\pi} + c$ [7] $\frac{\tan 6x}{6} + c$

Areas and volumes

[1] [a]
$$\pi \int_{a}^{b} y^{2} dx$$

[b]
$$\pi \int_{c}^{d} x^2 dy$$

[2] [a]
$$\frac{16383\pi}{7}$$

<u>Page 6:</u>

[b]
$$\frac{3069\pi}{5}$$

Logarithms

[1] [a]
$$\log_a y$$
 [b] 3 [2] [a] $\log m + \log n$ [b] $\log 2xy$

[3] [a]
$$\log m - \log n$$
 [b] $-\log q$ [c] $x = 6$

<u>Page 7:</u>

[4] [a]
$$n \log x$$
 [b] $x = 8$

Radian measure

[1]
$$180^{\circ}$$
 [2] [a] 150° [b] $\frac{11\pi}{6}$

[3] [a]
$$r\theta$$
 [b] $\frac{16\pi}{3}$

[4] [a]
$$\frac{1}{2}r^2\theta$$
 [b] $\frac{100\pi}{3}$

Page 8:

[5] [a]
$$\frac{1}{2} r^2 (\theta - \sin \theta)$$
 [b] $\frac{25}{3} (4\pi - 3\sqrt{3})$

The parabola

[1] Vertex (0, 0) Focus (0,
$$\frac{25}{4}$$
) Directrix is $y = -6\frac{1}{4}$

[2] Vertex
$$(-1, 2)$$
 Focus $(-1, 0)$ Directrix is $y = 4$