REVISION OF 2 UNIT INTEGRATION THEORY

There is a table of integrals on the back cover of this document

269. Evaluate each of the following indefinite integrals:

a)
$$\int x^2 - 3x + 4 dx$$
 b) $\int \sqrt{t} - \frac{1}{t^3} dt$

b)
$$\int \sqrt{t} - \frac{1}{t^3} dt$$

c)
$$\int (3x+5)^{17}dx$$
 d) $\int \frac{4}{x}dx$

d)
$$\int \frac{4}{x} dx$$

e)
$$\int e^{8x} dx$$

f)
$$\int \cos(4x)dx$$

g)
$$\int \sec^2(\frac{x}{3})dx$$

g)
$$\int \sec^2(\frac{x}{3})dx$$
 h) $\int \sin(x) - x dx$

i)
$$\int \frac{2}{4x+3} dx$$

i)
$$\int \frac{2}{4x+3} dx$$
 j)(*) $\int \tan(x) dx$

270. Evaluate each of the following definite integrals:

a)
$$\int_0^1 x - 3x^2 + 5x^4 dx$$
 b) $\int_0^9 \frac{1}{\sqrt{t}} dt$

b)
$$\int_0^9 \frac{1}{\sqrt{t}} dt$$

c)
$$\int_{\ln(3)}^{\ln(4)} e^{2x} dx$$

$$d) \quad \int_{e^7}^{e^8} \frac{2}{x} dx$$

e)
$$\int_0^{\frac{\pi}{4}} \cos(2x) dx$$

f)
$$\int_0^{\frac{\pi}{2}} \sec^2(\frac{x}{2}) dx$$

$$g)(*) \int_{-2}^{1} |x| dx$$

h)(*)
$$\int_{-1}^{1} 2^x dx$$

- 271. (a) Verify that $\frac{d}{dx}(e^{x^2}) = 2xe^{x^2}$.
 - (b) Hence or otherwise find $\int xe^{x^2}dx$.
- 272. Professor Dolittle has two pet functions; y = heckle(x) and y = jeckle(x). It is known

$$\frac{d}{dx}(\operatorname{heckle}(x)) = \operatorname{jeckle}(x) - 3x^2.$$

What is $\int \operatorname{jeckle}(x) dx$?

- 273. Find the area of the region bounded by the graph of $y = 4x^3 + 8x$ and the x-axis from x = 0 to x = 2.
- 274. Determine the area of the region bounded by the graph of $y = \cos(\frac{x}{2})$ and the x-axis from x = 0 to $x = \pi$.
- 275. Find (correct to 2 decimal places) the area of the region bounded by the graphs of $y = e^{2x}$ and $y = e^{5x}$ from x = 1 to x = 3.
- 276. (a) Evaluate $\int_{-2}^{2} x^3 dx$.
 - (b) What is the area of the region bounded by the graph of $y = x^3$ and the x-axis, from x = -2 to x = 2?
- 277. Professor Pepperoni has baked a square pizza with an area of 1 square unit and wishes to share it with two friends. He places the pizza in the first quadrant as shown and makes two cuts, one along the curve $y=x^2$ and the other along $y=\sqrt{x}$, producing three pieces A_1, A_2 and A_3 . Find the area of each of these regions and hence verify that the three pieces are of equal area.

- 278. Find the area of the region bounded by the graphs of $y = x^2$ and $y = 8 x^2$ from x = 0 to x = 3.
- 279. (*) (a) Find the two values of k for which $\int_0^k (4-2x)dx = 3$.
 - (b) By considering the graph of y = 4 2x explain why two values of k exist.
- 280. (*) (a) Sketch $y = \sin(x)$ and $y = \cos(x)$ on the same set of axes for $0 \le x \le \pi$.
 - (b) Find the area of the region bounded by the two graphs from x = 0 to $x = \pi$.

SOLUTIONS

Revision of 2 unit integration theory

269. (a)
$$\frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x + C$$
 (b) $\frac{2}{3}t^{\frac{3}{2}} + \frac{1}{2t^2} + C$

(b)
$$\frac{2}{3}t^{\frac{3}{2}} + \frac{1}{2t^2} + C$$

(c)
$$\frac{(3x+5)^{18}}{54} + C$$
 (d) $4\ln|x| + C$

(d)
$$4 \ln |x| + C$$

(e)
$$\frac{1}{8}e^{8x} + C$$

(e)
$$\frac{1}{8}e^{8x} + C$$
 (f) $\frac{1}{4}\sin(4x) + C$

(g)
$$3\tan\left(\frac{x}{2}\right) + 6$$

(g)
$$3\tan\left(\frac{x}{3}\right) + C$$
 (h) $-\cos(x) - \frac{x^2}{2} + C$

(i)
$$\frac{1}{2} \ln |4x + 3| + C$$
 (j) $-\ln |\cos(x)| + C$

$$(j) - \ln|\cos(x)| + C$$

270. (a)
$$\frac{1}{2}$$

(c)
$$\frac{1}{6}$$

270. (a)
$$\frac{1}{2}$$
 (b) 6 (c) $\frac{7}{2}$ (d) 2 (e) $\frac{1}{2}$ (f) 2 g) $\frac{5}{2}$ (h) $\frac{3}{2 \ln(2)}$

271. (a) Proof (b)
$$\frac{e^{x^2}}{2} + C$$

272. heckle
$$(x) + x^3 + C$$

$$274. 2 \text{ units }^2$$

278.
$$15\frac{1}{3}$$
 units ²

279. (a)
$$k = 1, 3$$

(b) The integral is negative for
$$x > 2$$
.

(b) $2\sqrt{2}$ units ²