SOUTH SYDNEY HIGH SCHOOL - SURDS TEST YEAR 10 ADVANCED MATHS

Circle the most appropriate answer:

 $\sqrt{18}$ simplifies to: 1

 $3\sqrt{2}$

 $2\sqrt{3}$ В

 $9\sqrt{2}$ C

It can't be simplified since 18 is not a perfect D square.

 $\sqrt{5} \times \sqrt{10}$ is equal to: 2

 $\sqrt{15}$ B Α

 $5\sqrt{2}$ C

 $2\sqrt{5}$ D

25

Which one of the following values of x is not a surd? 3

A

 $x = \sqrt{10\ 000}$ C

 $x = \sqrt[3]{9}$ D

 $(2\sqrt{5})^2$ is equal to:

 $4\sqrt{5}$

В 10 C 20 D 50

The simplest expression for $\sqrt{32} + \sqrt{8}$ is: 5

 $\sqrt{40}$

 $2\sqrt{10}$ В

 $6\sqrt{2}$ C

D The expression cannot be simplified.

Which one of the following statements is false? For all positive a and b:

 $\sqrt{a^2b^2} = ab$ Α

 $\sqrt{a^2 + b^2} = a + b$ В

 $\sqrt{a^3} = a^{\frac{3}{2}}$ D

The value of $\frac{5}{\sqrt{5}}$ is:

 $\sqrt{5}$ A

 \mathbf{B}

 $2\sqrt{5}$ C

 $5\sqrt{5}$ D

- The simplest expression for $\frac{\sqrt{64}}{2\sqrt{32}}$ is:

 $B \qquad \frac{4}{\sqrt{32}}$

 $C \frac{\sqrt{2}}{2}$

- D The expression cannot be simplified.
- The simplest expression for $(\sqrt{5} + \sqrt{2})^2$ is:

C $7 + \sqrt{20}$

- D $7 + 2\sqrt{10}$
- $(\sqrt{5} + \sqrt{3})(\sqrt{5} \sqrt{3})$ is equal to:
 - A $2\sqrt{15}$

B $2-2\sqrt{15}$ D 2

- $(\sqrt{6} + \sqrt{8})(\sqrt{2} + \sqrt{6})$, in its simplest form, is:
 - A $10 + 3\sqrt{12}$

 $10 + 6\sqrt{3}$

 $6\sqrt{3}$ C

- $4\sqrt{7}$ D
- $\sqrt{a^3b^4}$ in its simplest form is:

 $B = a^6b^8$

C $ab^2 \sqrt{a}$

- $D = a^3b^2$
- 13 $(1-\sqrt{3})^2$ is equal to:
 - A $1-\sqrt{6}$ C -2

B $10-2\sqrt{3}$

- D $4-2\sqrt{3}$
- 14 If $\sqrt{3}x = 9$, then x equals:
 - A $\sqrt{3}$

C $3\sqrt{3}$

- B 3 D $9-\sqrt{3}$
- The simplest expression for $\frac{1}{\sqrt{8}}$ is:

 $B \qquad \frac{\sqrt{8}}{8}$ $D \qquad -2\sqrt{2}$

16 If $x(\sqrt{3} - \sqrt{2}) = 1$, then x must be equal to:

C $\sqrt{3}-\sqrt{2}$

D

If $x = 2\sqrt{3}$, then (x + 1)(x - 1) equals:

C 11

 $11 - 4\sqrt{3}$ D

The simplest expression for $\sqrt{x} + \sqrt{x^3}$ is:

- $\sqrt{x}(x+1)$

C

D The expression cannot be simplified.

As an entire surd, $3x\sqrt{y}$ is equal to:

A $\sqrt{3x^2y}$ C $\sqrt{9x^2y}$

D

The only perfect cube in this list is: 20

С

3x D

The simplest expression for $\sqrt[3]{27x^4}$ is:

 $9\sqrt[3]{x^4}$ A

 $3\sqrt[3]{x^4}$

C

D The expression cannot be simplified.

The simplest expression for $(\sqrt{a}+1)(\sqrt{a}-1)$ is: 22

- $a-1-2\sqrt{a}$ C
- D

Given that $\sqrt{2} \approx 1.414$, $\sqrt{32}$ is approximately: 23

5.656

В 11.312

C 17.414 D 22.624

When expressed with a rational denominator, $\frac{2}{\sqrt{8} + \sqrt{6}}$ is equal to:

A $\sqrt{8} - \sqrt{6}$

- $\sqrt{8} + \sqrt{6}$ В
- C $2(\sqrt{8}-\sqrt{6})$
- D

 $\sqrt{2a^{16}bc^2} \times \sqrt{2b}$ is equal to:

A $a^4bc\sqrt{2}$

B $a^8 \sqrt{2bc}$ D $2a^8bc$

C $2a^4bc$

 $\sqrt{80} + 2\sqrt{45} - \sqrt{11} + 3\sqrt{44}$ simplifies to:

A $106 - \sqrt{11}$

- $34\sqrt{5} + 11\sqrt{11}$
- C $10\sqrt{5} + 5\sqrt{11}$
- D

 $a\sqrt{b}(2a\sqrt{b}+3\sqrt{a})$ simplifies to:

- A $2a^2b + 3a\sqrt{ab}$
- B $2a^2b + 3\sqrt{a}$
- C $2a^2\sqrt{b} + 3a\sqrt{ab}$
- D $5a^3b\sqrt{ab}$

28 If $a = \sqrt{3}$ and $b = \sqrt{2}$, then the simplest expression for the value of $\frac{a+b}{a-b}$ is:

A $\sqrt{5}$ C $5+2\sqrt{6}$

D $5-2\sqrt{6}$

The simplest value for $\frac{\sqrt{40} + \sqrt{30}}{\sqrt{10}}$ is:

A $4+\sqrt{30}$

B $2+\sqrt{30}$ D $2+\sqrt{3}$

 $C \sqrt{7}$

The basic numeral for $\frac{x\sqrt{x} \times \sqrt{125}}{\sqrt{5} \times \sqrt{x^3}}$ is:

 $2\sqrt{30}$ Α

В

C 25 D Unable to be determined without knowing the value of x.

ANSWERS TO WORKSHEET ON SURDS

1 A	2 B	3 C	4 C	5 C	6 B
7 A	8 C	9 D	10 D	II B	12 C
13 D	14 C	15 A	16 D	17 C	18 A
19 C	20 B	21 C	22 A	23 A	24 A
ar n	26 C	27 A	28 C	29 D	30 B