		•
Name:	 . Maths Class	1

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics Extension 1

Preliminary HSC Course

Assessment 2

July, 2015

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- · Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A set of Standard Integrals is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice Questions 1-5 5 Marks

Section II Questions 6-11 60 Marks

SECTION I

Choose the most appropriate answer from the choices, and fill in the circle on the multiple-choice answer sheet provided in your answer booklet

1 The gradient of the tangent to the curve $y = 5x - x^3 - 2$ at the point (2, 0) is

A. 6

B. 2

C. -2

D. -7

 $\lim_{x \to 2} \frac{x^2 - 6x + 8}{x - 2} =$

A. 0

B. -2

C. 6

D. ∞

The acute angle between the lines x = 3 and 3x - 2y - 5 = 0, to the nearest degree, is:

A. 56°

B. 124°

C. 34°

D: 144°

If y = 5t and $x = t^2$ then $\frac{dy}{dx} =$

A.

B. 2t

C. $\frac{5}{2t}$

 $\mathbf{D}, \ \frac{1}{2t}$

In the diagram at right, $f(x) = x^2$

P is the point (x, y) on the curve

Q is another point on the curve which has an x value of x+h

The slope of the secant PQ is given by

A.
$$\frac{(x+h)^2 - x^2}{x+h}$$

B.
$$\frac{(x+h)^2}{h}$$

C.
$$\frac{h^2-x^2}{h}$$

$$\mathbf{D}, \qquad 2x + h$$

SECTION II

Start each new question on a new page

QUESTION 6: (10 Marks)

Show that $\tan x$

.52 5-		Marks
(a)	If $0^{\circ} \le \theta \le 90^{\circ}$ and $\cos \theta = x$ find $\sin 2\theta$ in terms of x	2
(b)	Find the distance between the lines $2x + 3y = 6$ and $2x + 3y + 4 = 0$ as a simplified surd.	. 3
(c)	The interval joining the points A (-1, 5) to B(2, -1) is divided by the point M externally in the ratio 3:2. Find the co-ordinates of M.	2

QUESTION 7: (10 Marks) (Start a New Page)

(a) Find derivatives of

3

i)	$y=\frac{3}{x}$	S
ii)	$y = 5\sqrt{x}$	

- (iii) $y = (2x^3 1)(x^2 + 1)^3$ (give the answer in fully factored form)
- (b) A is the point (3, 0) and B is on the y axis.
 AB makes an angle of 135° with the positive x-axis.

BC is drawn perpendicular to AB.

- (i) Find the equation of the line BC
- (ii) You are further given that C lies on the (negative) x-axis. Find the area of $\triangle ABC$
- (c)) In the diagram at right, $\triangle ABQ$ is right-angled at B.

$$\angle QAP = \beta$$
 and $\angle PAB = \alpha$
PQ = PB = 1 unit
AB = x units

Prove that $\tan \beta = \frac{x}{x^2+2}$

Marks

2

QUESTION 8: (10 Marks) (Start a New Page)

(a)	Show that the gradient of the tangent to the curve $y = \frac{x^3}{1+x^2}$ is always		2
	positive except at the origin.	-	

Marks

- (b) (i) Find the exact value of tan 15° in simplified form
 - (ii) Hence find the value of cot 15° + tan 15°
- (c) Solve the equation $2\sin^2 x + \cos x 2 = 0$, for $0^o \le x \le 360^o$
- For the circle $x^2 + y^2 = 16$, A and B are the points where the graph cuts the x-axis.

P (a, b) is a point on the circle

- (i) Find an expression for the gradient of PA
- (ii) Hence prove that $\angle APB = 90^{\circ}$

QUESTION 9: (10 Marks) (Start a New Page)

		•	Mark
(a)	(i)	Find the value of $f'(8)$ if $f(x) = \frac{2}{\sqrt{x-4}}$	2
	(ii)	Hence, find the equation of the normal to the curve $y = f(x)$ at the point on it where $x = 8$	2
(b)		Using the method of Differentiation from First Principles, find $\frac{dy}{dx}$ if $y = x^2 + x$	3
(©		The angle between the 2 lines shown below is 30^{o} .	3

Show that *m* has the value $\frac{18+5\sqrt{3}}{11}$

QUESTION 10: (10 Marks) (Start a New Page)

a)	(i)	Express $\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$,	. 2
		where $R > 0$ and $0^o \le \alpha \le 90^o$	
	(ii)	Hence, or otherwise, solve $\cos\theta - \sin\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$	2
	(iii)	What is the maximum value that $\cos\theta - \sin\theta$ can take be? Explain your answer.	.1

(b) Two men, A and B, are standing on level ground at points 100 metres apart.

From A, who is due south of a perpendicular tower, the angle of elevation to the top of the tower is 55° . B, who is due east of the tower, notes that the tower has an angle of elevation of 40°

(i) If h is the height of the towers, prove that

$$h^2 = \frac{10\ 000tan^2 40^0 tan^2 55^0}{tan^2 40^0 + tan^2 55^0}$$

(ii) Find the height of the tower, to the nearest metre.

QUESTION 11: (10 Marks) (Start a New Page)

Marks

		Marks
(a) ···	Shade the area given by the relationship $ x \le y $	3
(b) (i	Prove that $\cos 3A = 4\cos^3 A - 3\cos A$	2
(i	i) Using the above, solve $4\cos^3 A - 3\cos A = 1$ for $0^o \le A \le 360^o$	2

(b) AB is a diameter of the circle $(x-2)^2 + (y-2)^2 = 4$, where A is the closest point on the circle to the Origin (0, 0).

Find an unsimplified expression for the x-co-ordinate of B.

END OF EXAMINATION PAPER

SECTION	= <u>SIN7C</u> CO3 X
1 D	= tank
2 B	= LHS
3 C	QUESTION 7
	(a) i. $y = \frac{3}{x}$ $\frac{dy}{dt} = -3x^{-2}$
6 D	$\frac{d\vec{y}}{d\vec{z}} = -3x^{-2}$
	$\frac{3}{2} - \frac{3}{2}$
SECTION II	$ \begin{array}{ccc} a_1 & & & \\ $
QUESTION 6	$\frac{dy}{dx} = \frac{5}{2} \times \frac{1}{2}$
(a) $\sin 2\theta = 2 \sin \theta \cos \theta$	5 2 5
$ \sqrt{ -x^2 } = 2\sqrt{ -x^2 }(x)$	$ y = (2x^3 - 1)(x^2 + 1)^3$
$\theta = \frac{-2x\sqrt{1-x^2}}{}$	$u = 2x^3 - 1$ $v = (x^2 + 1)^3$
x	$u = 2x^{3} - 1 \qquad v = (x^{2} + 1)^{3}$ $u' = 6x^{2} \qquad v' = 3(x^{2} + 1)^{2} \cdot 2x$ $= 6x \cdot (x^{2} + 1)^{2}$
(b) A point on 2x+34=6 is (30)	$\frac{dy}{dx} = \frac{6x^2(x^2+1)^3+(2x^3-1)6x(x^2+1)^2}{6x^2}$
	$\frac{dx}{2} = 6x(x^2+1)^2 \left[x(x^2+1) + (2x^3-1)\right]$
$P = \frac{2 \times 3 + 3 \times 0 + 4}{\sqrt{2^2 + 3^2}}$	$= 6x(x^2+1)^2(8x^3+x-1)$
= <u>10</u> √13	
and the second	(b) in the second
	(b) $i_1 m_{BC} = 1$ $B(0,3)$
(c) M (8,-13)	y-3=1(x-0)
$A(-1,5)$ $B(2,-1)$ $k_1: k_1=-3:2$	y = x+3
$M = \left(-3x2 + 2x - 1 - 3x - 1 + 2x 5 \right)$	(ii) AC= 6 units OB= 3 units
-1 , -1	A = 12×6×3
= (8,-13)	= 9 u ²
(d) RHS = 1- cos 2x	(c) $ton \beta = ton [(\alpha + \beta) - \alpha]$
sin 2x	= tan (x+B) - tan ox
= 1-(1-2 sin2x) 2 sin x 65x	It tan(xxp) tan of
$= \frac{2 \sin^2 x}{2 \sin^2 x}$ $= \frac{2 \sin^2 x}{2 \sin^2 x} \cos^2 x$	$=\frac{2}{\chi}-\chi$
2 siñ × 65>(1+ 2

(c) $2 \sin^2 x + \cos x - 2 = 0$
$2(1-\cos^2x) + \cos x - 2 = 0$
$2-2\cos^2x + \cos x - 2 = 0$
$2\cos^2x - \cos x = 0$
$0.05 \times (2 \cos x - 1) = 0$
$\omega_S \chi = 0$ or $\omega_S \chi = \frac{1}{2}$
x = 90,270 $x = 60,300$
d) A(4,0) B(-4,0)
d) $A(4,0)$ $B(-4,0)$ i. $m_{pq} = \frac{b}{a-4}$
ii' . $m_{PB} = \frac{b}{a+4}$
$\frac{m_{PA} \times m_{PB} = b^2}{a^2 \times b^2}$
a ² -16
and since $a^2 + b^2 = 16$
a ² -16=-6 ²
$m_{pq} \times m_{pg} = \frac{b^2}{-b^2}$
= -
PA 15 perpondicular to PB
QUESTION 9
(a) 1. $f(x) = \frac{2}{\sqrt{x-4}}$ = $2(x-4)^{\frac{1}{2}}$
$= 2(x-4)^{\frac{1}{2}}$
$f'(x) = 2x^{-\frac{1}{2}}(x-4)^{-\frac{3}{2}}$
$-(x-4)^{72}$
$f'(8) = -\frac{1}{4^{\frac{3}{2}}}$
= -1

,	· · · · · · · · · · · · · · · · · · ·
11. Macmal = 8 (8,1)	:. caso- sino = 12 as (0+45°)
y-1=8(x-8)	
4 = 8x-63	ii. $\cos \theta - \sin \theta = 1$
	V2 cas (0+45) = 1
(b) $\frac{dy}{dx} = \frac{\ln f(x+h) - f(x)}{h}$	cas (0+45°) = 13
$\int_{a}^{\infty} = \lim_{x \to 0} (x+h)^2 + (x+h) - (x^2+x)$	1.0+45"= 45" or 315" or 405"
	:. 0 = 0°, 270°, 360°
$\lim_{h \to \infty} 2xh + h^2 + h$	
= h->0 h	iii. cos A ≤ l for all A
= lim h>0 2xth+1	:. cos 0 - sin 0 ≤ √2.
= 2×4	
(c) $M_1 = M$ and $M_2 = \frac{1}{2}$	(b) i. let AD = or and BD = y
$tan \theta = \left[M_1 - M_2 \right]$	$\frac{h}{y} = \tan 55^{\circ} 2 \frac{h}{y} = \tan 40^{\circ}$
	1 ~
$\frac{1+m_1m_2}{\sqrt{3}} = \frac{m-\frac{1}{2}}{1+\frac{1}{2}m}$	$x = h \qquad y = h$ $ton 55^{\circ} \qquad ton 40^{\circ}$
$\sqrt{3}m - \sqrt{3} = 1 + \frac{1}{2}m$	$\sin(x^2+y^2) = 100^2$
$\ln(2\sqrt{3}-1) = 2+\sqrt{3}$	$\frac{h^2}{\tan^2 55} + h^2 = 100^2$
$m = 2+\sqrt{3}$	
2/3-1	$\frac{h^2 \tan^2 40^\circ + h^2 \tan^2 55^\circ}{\tan^2 55^\circ \tan^2 40} = -100^2$
= 8+5\3 /	h2(ton240'+ ton255')= 10000 tan355 to
	:. h2 = 10 000 tan255° tan240°
QUESTION 10	tan240° + tan255'
(a) 1. $R = \sqrt{2}$	11: h = 72 m
Using cos (0+x) = cos 0 cos x - sin 0 sinx	
COSA - SIND = V2 (to cosa - to sind)	
00s of = 15	
≪ = 45°	
	<u></u>

