

2003

YEAR 11 YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- · All necessary working should be shown in every question
- Start each Section in a new booklet

Total marks - 130

- Attempt all questions
- · Questions are not of equal value, the mark value is shown beside each part.
- Hand up your paper in five parts: Section A, Questions 1 & 2;

 - Section B, Questions 3 & 4;
 - Section C, Questions 5 & 6;
 - Section D, Questions 7 & 8;
 - Section E, Questions 9 & 10

Examiner: R.Boros

Total marks - 130 Attempt Questions 1-10

Answer each Section in a SEPARATE writing booklet. Extra writing booklets are available upon request.

Section A Use a SEPARATE writing booklet.

Marks

Question 1 (16 marks)

(a) Express each of the following as a rational number.

(i)
$$49^{-\frac{1}{2}} \times 27^{\frac{2}{3}}$$

1

(ii) The quotient of
$$\sqrt{7}$$
 and $\sqrt{63}$

1

(iii)
$$log_2 8$$

1

$$(iv) \quad \frac{\sqrt{32} - \sqrt{8}}{3\sqrt{2}}$$

2

(b) Find, correct to 2 decimal places,
$$\frac{(3.24)^2}{5.73 - 2.84}$$

1

(c) Solve for
$$x$$
, $\frac{2x}{x-5} = \frac{3}{5}$.

2

(d) Factorise fully the expression
$$x^3 - x^2 - x + 1$$
.

2

2

(f) Solve the inequality
$$x^2 - 4x < 0$$
.

2

(g) Given
$$v^2 = u^2 - 2aS$$
, $v = 2.5$, $u = 2.3$, and $a = 7$, find S correct to 3 significant figures.

Find the centre and radius of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$.

2

(e)

Section A continued

Marks

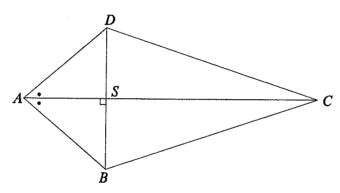
Question 2 (14 marks)

- (a) Given the points A(-5, 3), B(1, -5), and C(2, 2),
 - (i) Find the length of AB.

1

(ii) Find the equation of the line AB written in general form.

2


(iii) Find the perpendicular distance of C from the line AB.

2

(iv) Hence or otherwise, calculate the area of the triangle ABC.

1

(b)

In the above diagram, not to scale, ABCD is a quadrilateral. The diagonals AC and DB intersect at right angles at point S. $D\hat{A}S = B\hat{A}S$.

(i) Prove that $\triangle ASB$ is congruent to $\triangle ASD$.

2

(ii) Hence prove that DA = BA.

1

- (c) Given $f(x) = x^2 + 3x + 2$,
 - (i) Evaluate f(-3).

1

(ii) Find a simple expression for f(a+2).

2

(d) Solve for x, $|2x-1| \le 5$.

2

Ma03Yearly11.wpd

SBHS

Section B Use a SEPARATE writing booklet.

Marks

2

Question 3 (13 marks)

- (a) Doug observes a clifftop A from his yacht at position P. He then sails 500 m towards the cliff to position Q. The angle of elevation to the clifftop from P is 5° and from Q is 8° .
 - (i) Draw a diagram to illustrate the above information and use the Sine Rule to calculate AQ correct to the nearest metre.
 - (ii) Hence or otherwise find the distance QB correct to the nearest 10 metres.
- (b) Simplify the expression $\frac{\tan \theta}{\cot \theta} \frac{\sec^2 \theta}{1}$.
- (c) (i) Find θ given that $\sin \theta = \frac{1}{2}$ where $0^{\circ} \le \theta \le 180^{\circ}$.
 - (ii) Hence find the exact values of $\tan \theta$ and $\sec \theta$.
- (d) Simplify $\sin\theta \cos(90^\circ \theta) + \cos\theta \sin(90^\circ \theta)$.
- (e) If $\sin \theta = \frac{8}{17}$ and θ is an acute angle, find the exact values of $\cos \theta$ 2 and $\tan \theta$.

Section B continued Marks

Question 4 (15 marks)

- (a) Sketch the area defined by the inequality $y \le x^2$.
- (b) Let α and β be the roots of the equation $x^2 5x + 2 = 0$. Find the values of:

(i)
$$\alpha + \beta$$

(iii)
$$(\alpha + 1)(\beta + 1)$$

(c) State the domain and range of each of these functions.

(i)
$$x^2 + 3 = y$$

(ii)
$$y = 3^x$$

(d) Solve for x the equation
$$9^x - 9(3)^x = 0$$
.

(e) The roots of the quadratic equation
$$px^2 - x + q = 0$$
 are -1 and 3. Find p and q .

Section C Use a SEPARATE writing booklet.

Marks

Question 5 (15 marks)

- (a) A parabola has the equation $y = x^2 12x + 20$. Find
 - (i) where it cuts the x and y axes,

2

(ii) its axis of symmetry and vertex,

2

(iii) the focus, by first expressing it in the form $(x-h)^2 = 4a(y-k)$,

2

(iv) the equation of the directrix.

1

(b) For each of the quadratics below, evaluate the discriminant and state the relevance of this with regard to the roots of the equation.

(i)
$$x^2 + 3x + \frac{9}{4} = y$$

2

(ii)
$$3x^2 - 2x = y + 5$$

2

- (c) Find the values of M for which the equation $4x^2 Mx + 9 = 0$ has
 - (i) exactly one real root,

2

(ii) real roots.

Section C continued

Marks

Question 6 (14 marks)

(a) Solve the following equations simultaneously, 4x - y = 3 and 10x + 3y = 2.

2

(b) Find x given $2\log_9\sqrt{3} + \log_981 = x$.

3

(c) Find x correct to 3 decimal places given that $7^x = 15$.

2

(d) If Ron invests \$500 at 12.5 % p.a. compound interest, how long would it take the investment to grow to a sum of \$1000. (Answer in years, correct to 2 decimal places.)

3

(e) The r^{th} term of a series is $3 \times 2^{(r-4)}$. Determine which of the numbers 96, $\frac{3}{2}$, 256 belong to the series.

2

(f) Evaluate $\sum_{n=-1}^{7} (2n+3)$.

Section D	Use a SEPARATE	writing booklet.
-----------	----------------	------------------

Marks

Question 7 (10 marks)

(a) Let A (0, -2) and B (1, 0) be 2 fixed points and let P (x, y) be a variable point. Find the locus of P such that the length $(PA)^2$ equals the length $(PB)^2$.

3

(b) Find the locus of points 2 units away from the line y = 3.

2

(c) Sketch the graph of $y = \sin\theta$ given $-180^{\circ} < \theta < 90^{\circ}$.

3

(d) Find the values of a and b given that $(ax-3)^2 + b = 4x^2 - 12x + 15.$

Section D continued

Marks

Question 8 (12 marks)

(a) Differentiate each of the following:

(i)
$$y = 2x^3 - 8$$

1

(ii)
$$y = (2x - 1)^3$$

1

(iii)
$$y = \frac{2x}{1 - 3x}$$

2

(iv)
$$y = x^2 \sqrt{x}$$

2

$$(v) \quad y = \frac{7}{2x^3}$$

1

(b) (i) Find the gradient of the normal to the curve
$$y = 1 - \frac{1}{2}x^2$$
 at the point $(1, 3)$.

3

(ii) Find the point on $y = 1 - \frac{1}{2}x^2$ where the tangent to the curve is parallel to this normal.

Section E Use a SEPARATE writing booklet.

Marks

Question 9 (11 marks)

(a) Evaluate the following limits:

(i)
$$\lim_{x \to 5} \left(\frac{x-5}{x^2 - 25} \right)$$

2

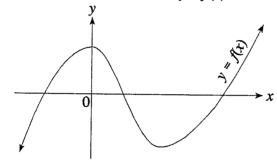
(ii)
$$\lim_{x \to \infty} \left(\frac{7 - 2x - 3x^2}{5x^2 + 3} \right)$$

3

(b) Two cars depart town A at the same time. Car X travels at 60 km/h on a bearing of 345°T, whilst car Y travels at 100 km/h on a bearing of 085°T. How far apart would the cars be after 3 hours? Answer correct to one decimal place.

3

(c) Differentiate $y = x^2 + x$ from first principles.


Section E continued

Marks

Question 10 (10 marks)

(a) The diagram below shows y = f(x).

3

Copy or trace this diagram into your answer booklet and sketch a possible graph for y = f'(x) on the same set of axes.

- (b) A farmer wishes to make a rectangular enclosure using a river as one boundary and 400 m of fencing on the other three sides.
 - (i) Find the maximum possible area of the enclosure.

3

(ii) What are the dimensions of this enclosure?

1

(c) Find x correct to 3 decimal places, given that $\log_7 6 - 2\log_7 3 = x$.

3

END OF THE PAPER

SEPTEMBER 2003

YEARLY EXAMINATION

YEAR 11

Mathematics

Sample Solutions

$$\frac{Q \text{ ues} + 1 \text{ on } (1)}{(a) 49^{1/2} \times 27^{2/3}}$$

$$\frac{(a) 49^{1/2} \times 27^{2/3}}{(1) = \frac{1}{7} \times (3^3)^{2/3}}$$

$$\frac{(a) \sqrt{7}}{\sqrt{63}} = \frac{1}{3}$$

$$\frac{(a) \sqrt{7}}{\sqrt{63}} = \frac{1}{3}$$

$$\frac{(a) \sqrt{7}}{\sqrt{63}} = \frac{1}{3}$$

$$\frac{(a) \sqrt{7}}{\sqrt{63}} = \frac{1}{3}$$

$$\frac{(a) \sqrt{7}}{\sqrt{7}} = \frac{1}{3}$$

$$\frac{$$

(e)

$$x^{2}-6x+9+y^{2}+4y+4$$
 2
 $=25$
 $(x-3)^{2}+(y+2)^{2}=25$
[Centre $(3,-2)$ $+=5$]
(f) $x^{2}-4x < 0$
 $x(x-4) < 0$
 $x($

(1)
$$\angle PAQ = 3^{\circ}$$
 (ext, engle thm)
$$\frac{AQ}{An5^{\circ}} = \frac{500}{\sin 3^{\circ}}$$

$$AQ = \frac{500 \text{ Air}}{\sin 3^{\circ}}$$

$$= \frac{500 \text{ Air}}{\sin 3^{\circ}}$$

$$= \frac{833 \text{ m}}{\cos 3^{\circ}}$$

(ii)
$$\cos 8^\circ = \frac{QB}{AQ}$$

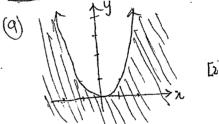
$$\therefore QB = Ad \cos 8^\circ$$

$$= \frac{820 \text{ m}}{\text{frequest 10m}}$$

(V)
$$\tan \theta = \frac{1}{\sqrt{3}} \frac{x^2 - \frac{1}{\sqrt{5}}}{x^2 - \frac{2}{\sqrt{5}}}$$

$$\sec \theta = \frac{2}{\sqrt{3}} \frac{x^2 - \frac{2}{\sqrt{5}}}{x^2 - \frac{2}{\sqrt{5}}}$$
[2]

(d) Dix
$$\theta$$
. (es(90- θ) + (es θ Dix(90- θ)


= Dix θ . Dix θ + (es θ). (es θ)

= $\frac{1}{17}$

(e) Dix $\theta = \frac{8}{17}$

(e) Dix $\theta = \frac{15}{17}$

[2]

(1)
$$d+\beta=5$$

(1)
$$\angle B = \overline{2}$$

(M)
$$(\alpha+1)(\beta+1) = \alpha\beta + (\alpha+1)(\beta+1)$$

= 2+5+1
= 8

$$0 = 30^{\circ} \text{ or } 150^{\circ}$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

(d)
$$9^{x}-9(3)^{x}=0$$

 $(3^{x})^{2}-9(3^{x})=0$
Let $u=3^{x}$
 $u^{2}-9u=0$
 $u(u-9)=0$
 $u(u-9)=0$

$$d+B = \frac{1}{p} d = \frac{1}{p}$$

$$d = \frac{1}{p} d = \frac{1}{p} d = \frac{1}{p}$$

```
[2] 5. (a) (i) On the x-axis, y = 0; so (x - 10)(x - 2) = 0.
On the y-axis, x = 0; so y = 20.
\therefore The curve meets the x-axis at 2, 10, and the y-axis at 20.
```

[2] (ii) The midpoint of 2 and 10 is 6, so the axis of symmetry is
$$x = 6$$
. When $x = 6$, $y = -16$, so the vertex is $(6, -16)$.

[2] (iii)
$$x^2 - 12x + 36 = y - 20 + 36,$$

 $(x - 6)^2 = 4 \times \frac{1}{4} \times (y + 16).$
 \therefore The focus is at $(6, -15\frac{3}{4})$.

1 (iv) The directrix is
$$y = -16\frac{1}{4}$$
.

[2] (b) (i)
$$\triangle = 9 - 9 = 0 \Longrightarrow$$
 one real root.

[2] (ii)
$$\triangle = 4 + 60 = 64 \Longrightarrow$$
 two real, rational roots.

(c) (i)
$$\triangle = M^2 - 144 = 0$$
, $M^2 = 144$.
 \therefore One root when $M = \pm 12$.

[2] (ii)
$$M^2 - 144 \ge 0$$
, $M^2 \ge 144$, $|M| \ge 12$. $M \le -12$, $M \ge 12$.

2 6. (a)
$$4x - y = 3, \cdots (1)$$

 $10x + 3y = 2, \cdots (2)$
 $y = 4x - 3 \text{ from (1), then substitute in (2).}$
 $10x + 3(4x - 3) = 2,$
 $10x + 12x - 9 = 2,$
 $22x = 11,$
 $x = \frac{1}{2},$
 $y = -1.$

[3] (b)
$$\log_9 3 + \log_9 9^2 = x$$
, $\log_9 9^{\frac{1}{2}} + \log_9 9^2 = x$, $\frac{1}{2} \log_9 9 + 2 \log_9 9 = x$, $\frac{1}{2} + 2 = x$, $i.e.$, $x = 2\frac{1}{2}$ (or $\frac{5}{2}$).

[2] (c)
$$\log 7^x = \log 15$$
, $x \log 7 = \log 15$, $x = \frac{\log 15}{\log 7}$, ≈ 1.392 .

- 3 (d) $\$1\,000 = \$500 \left(1 + \frac{12.5}{100}\right)^n$, $2 = (1.125)^n$, $\log 1.125^n = \log 2$, $n \log 1.125 = \log 2$, $n = \frac{\log 2}{\log 1.125}$, $n \approx 5.88$ years.
- [2] (e) $96 \div 3 = 32$, $\frac{3}{4} \div 3 = \frac{1}{4}$, $256 \div 3 = 85\frac{1}{3}$, $= 2^5$. Not a power of 2. $\therefore 96, \frac{3}{4}$ belong to the series.
- 2 (f) $\sum_{n=-1}^{7} (2n+3) = 1+3+5+7+9+11+13+15+17,$ = 81.

QUESTION 7 QUESTION 8 (axi) A(0,-2) B(1,0) (PA)2=(PB)2 (x-0)2+(y+2)2=(x+1)2+(y-1)2 $x^{2}+y^{2}+4y+4=x^{2}-2x+1+y^{2}$ 44+2x +3=0 3 2x+4y+3=0 = 2x1-32 - Vdu-udv (1-3x)xz-2xx-3 (1-3x)= $(1-3x)^2$ $(ax-3)^2+6=(2x-3)^2+6$

Question 9.

(a) (i)
$$\lim_{x \to 5} \frac{x-5}{x^2 - 25}$$

$$= \lim_{x \to 5} \frac{x-5}{(x-5)(x+5)}$$

$$= \lim_{x \to 5} \frac{1}{(x+5)}$$

$$= \frac{1}{10}$$

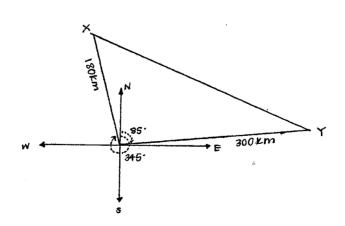
(ii)
$$\lim_{x \to \infty} \frac{7 - 2x - 3x^2}{5x^2 + 3}$$

$$= \lim_{x \to \infty} \frac{\frac{7}{x^2} - \frac{2}{x^2} - \frac{3x^2}{3x^2}}{\frac{5x^2}{5x^2} + \frac{3}{x^2}}$$

$$= \frac{3}{5}$$

(b) In 3 hours car X travels 180km. In 3 hours car Y travels 300km.

$$XY^{2} = AY^{2} + AX^{2} - 2AY.AX.\cos A$$


$$= 300^{2} + 180^{2} - 2(300)(180)\cos 100^{\circ}$$

$$XY^{2} = AY^{2} + AX^{2} - 2AY.AX.\cos A$$

$$= 300^{2} + 180^{2} - 2(300)(180)\cos 100^{\circ}$$

$$XY = 375.7$$

:.
$$XY = 375.7 \text{ km (1d.p.)}$$

(c) Let
$$f(x) = x^2 + x$$

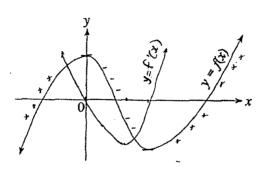
Let $f(x+h) = (x+h)^2 + (x+h)$

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to \infty} \frac{(x+h)^2 + (x+h) - (x^2 + x)}{h}$$

$$= \lim_{h \to \infty} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$$

$$= \lim_{h \to \infty} \frac{2xh + h^2 + h}{h}$$


$$= \lim_{h \to \infty} \frac{h(2x+h+1)}{h}$$

$$= 2x + 1$$

f'(x) = 2x + 1 by first principles.

Question 10.

(a)

(b) (i) Let
$$P = 2x + y$$
, where $P = 400$.

$$400 = 2x + y$$

$$\therefore y = 400 - 2x$$

$$Area = xy$$

$$=x(400-2x)$$

$$=400x-2x^2$$

Using the axis of symmetry formula, $x = -\frac{b}{2a}$, where a = -2, b = 400.

$$x = -\frac{b}{2a}$$

$$=-\frac{400}{2(-2)}$$

$$=100$$

At
$$x = 100$$
, $y = 200$.

Hence the maximum possible area of this enclosure is $A = 20000 \text{ m}^2$

(ii) Hence the dimensions of this enclosure are 100m by 200m.

$$\log_{7} 6 - 2\log_{7} 3 = x$$

$$\log_{7} 6 - \log_{7} 3^{2} = x$$

$$\frac{\log_{10} 6}{\log_{10} 7} - \frac{\log_{10} 9}{\log_{10} 7} = x$$

$$0.9207 - 1.1291 = x$$

$$x = -0.20845$$

$$\therefore x = -0.208 \text{ (3dp)}.$$

or

$$\log_7\left(\frac{6}{3^2}\right) = x$$

$$\log_7\left(\frac{2}{3}\right) = x$$

$$7^x = \frac{2}{3}$$

$$x \log 7 = \log \frac{2}{3}$$

$$\therefore x = -0.208$$