

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate bundle
- All necessary working should be shown in every question.

Total Marks - 85

- Attempt questions 1 3
- All questions are not of equal value.

Examiner: C. Kourtesis

Question 1. (Start a new answer sheet.) (31 marks)

- Given that $w = \sqrt{3} + i$, express the following in the form a + ib where a and b are
- (a) Given that $w = \sqrt{3} + i$, express the following in the form a + ib where a and b are
 - (i) -iw
 - (ii) w^2
 - (ii) w⁻¹
- (b) If z = 1 i find:
 - (i) |z| and $\arg z$
 - (ii) z^8 in exact form
- (c) Consider the equation 3

$$z^2 + kz + (4 - i) = 0$$

Find the complex number k given that 2i is a root of the equation.

(d) If z = x + iy prove that

$$z + \frac{\left|z\right|^2}{z} = 2\operatorname{Re}(z)$$

- (e) Sketch the locus of z satisfying
 - $(i) \quad |z+2i|=2$
 - $(ii) \quad \operatorname{Re}(z^2) = 0$
- (f) (i) Plot on the Argand diagram all complex numbers that are roots of $z^5=1$.
 - $^{\circ}$ (ii) Express $z^{5}-1$ as a product of real linear and quadratic factors.

- (g) (i) By solving the equation $z^3+1=0$ find the three cube roots of -1.
 - (ii) Let ω be a cube root of -1, where ω is not real. Show that $\omega^2 + 1 = \omega$
 - (iii) Hence simplify $(1-\omega)^{12}$.
 - (iv) Find a quadratic equation with real coefficients whose roots are ω^2 and $-\omega$.

9

Question 2. (Start a new answer sheet.) (31 marks)

Given that $cis \theta = cos \theta + i sin \theta$ find in exact form (a)

$$cis\frac{\pi}{12}cis\frac{\pi}{6}$$

The equation $x^3 + Ax + B = 0$ (A, B real) has three real roots α , β and γ . (b)

9

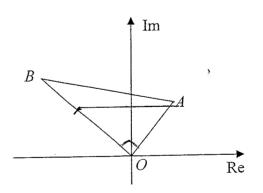
- Evaluate $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ and $\alpha^2 + \beta^2 + \gamma^2$ in terms of A and B.
- (ii) Prove that A < 0.
- (iii) Find the cubic polynomial whose roots are α^2 , β^2 and γ^2 .
- It is given that z = 1 + i is a zero of $P(z) = z^3 + pz^2 + qz + 6$ where p and q are real (c) numbers.
- 4

- Explain why \overline{z} is also a zero of P(z). (State the theorem.)
- (ii) Find the values of p and q.

- Find the number of ways in which six women and six men can be arranged in three sets of four for tennis if:

- there are no restrictions.
- (ii) each man has a woman as a partner.
- In the Argand diagram the points O, A (e) and B are the vertices of a triangle with $\angle AOB = 90^{\circ} \text{ and } \frac{OB}{OA} = 2$.

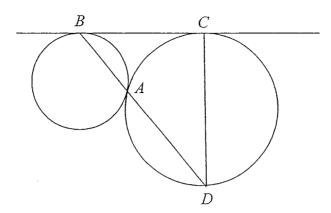
The vertices A and B correspond to the complex numbers z_1 and z_2 respectively.



Show that:

- (i) $2z_1 + iz_2 = 0$
- (ii) the equation of the circle with AB as diameter and passing through O is given by

$$\left|z-z_1\left(\frac{1}{2}+i\right)\right|=\frac{\sqrt{5}}{2}\left|z_1\right|.$$



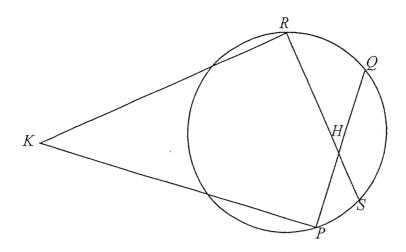
The two circles touch at A and a common external tangent touches them at B and C. BA produced meets the larger circle at D.

Prove that *CD* is a diameter.

Question 3. (Start a new answer sheet.) (23 marks)

- Marks 3
- (a) In how many ways can three different trophies be awarded to five golfers if a golfer may receive at most two trophies?
- (b) Sketch the region in the Argand diagram consisting of all points z satisfying $\left|\arg z\right| < \frac{\pi}{4} \text{ and } z + \overline{z} < 4 \text{ and } |z| > 2.$
- (c) (i) Prove that $(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n\theta}$, where *n* is a positive integer.
 - (ii) Hence or otherwise show that $(1+z)^4 + (1-z)^4 = 0$ has roots $\pm i \tan \frac{\pi}{8}$ and $\pm i \tan \frac{3\pi}{8}$

(d)



In the diagram above PQ and RS are two chords intersecting at H, and $\angle KPQ = \angle KRS = 90^{\circ}$.

6

- (i) Copy the diagram onto your answer sheet, indicating the above information.
- (ii) Prove that
- (α) $\angle PKH = \angle PQS$.
- (β) KH produced is perpendicular to QS.
- (e) If α is a real root of the equation $x^3 + ux + v = 0$ prove that the other two roots are real if $4u + 3\alpha^2 \le 0$.

End of paper.

2005
HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK #1

Mathematics Extension 2 Sample Solutions

Question	Marker
1	PSP
2	DH
3	PRB

Question 1

(a)
$$w = \sqrt{3} + i$$

(i) $-iw = -i(\sqrt{3} + i) = 1 - i\sqrt{3}$

(ii)
$$w^2 = (\sqrt{3} + i)^2 = 2 + i2\sqrt{3}$$

(iii)
$$w^{-1} = \frac{\overline{w}}{|w|^2} = \frac{\sqrt{3} - i}{4} = \frac{\sqrt{3}}{4} - i\left(\frac{1}{4}\right)$$

(b)
$$z = 1 - i$$

(i)
$$|z| = \sqrt{2}, \arg(z) = -\frac{\pi}{4}$$

(ii)
$$z^8 = \left(\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^8 = 16\operatorname{cis}\left(-\frac{8\pi}{4}\right) = 16\operatorname{cis}\left(-2\pi\right) = 16$$

(c)
$$p(z) = z^{2} + kz + (4 - i)$$

$$p(2i) = 0 \Rightarrow (2i)^{2} + k(2i) + 4 - i = 0$$

$$\therefore -4 + 2ki + 4 - i = 0$$

$$\therefore 2ki = i$$

$$\therefore k = \frac{1}{2}$$

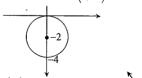
(d)
$$z = x + iy$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

$$\therefore z + \frac{|z|^2}{z} = z + \overline{z} = 2 \operatorname{Re} z$$

(e) (i)
$$x^2 + (y+2)^2 = 4$$

A circle with centre $(0,-2)$ ie $-2i$ and radius 2



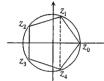
(ii)
$$\operatorname{Re}(z^{2}) = x^{2} - y^{2} = 0$$

$$\therefore x^{2} = y^{2}$$

$$\therefore y = \pm x$$

(f) (i)
$$z^5 = 1 \times \operatorname{cis}(0)$$

 $= \operatorname{cis}(0 + 2k\pi), k \in \mathbb{Z}$
 $= \operatorname{cis}(2k\pi)$
 $z = \left[\operatorname{cis}(2k\pi)\right]^{1/5}$
 $= \operatorname{cis}\left(\frac{2k\pi}{5}\right)$ (deMoivre's Theorem)
 $k = 0$: $z_0 = \operatorname{cis}(0) = 1$
 $k = 1$: $z_1 = \operatorname{cis}\left(\frac{2\pi}{5}\right)$
 $k = 2$: $z_2 = \operatorname{cis}\left(\frac{4\pi}{5}\right)$ $|z_k| = 1$
 $k = -1$: $z_3 = \operatorname{cis}\left(-\frac{2\pi}{5}\right)$
 $k = -2$: $z_4 = \operatorname{cis}\left(-\frac{4\pi}{5}\right)$



The 5 roots must form a regular pentagon inscribed in a unit circle.

As well:

 z_1 and z_4 are conjugates z_2 and z_3 are conjugates

(ii)
$$(z-\alpha)(z-\overline{\alpha}) = z^2 - 2\operatorname{Re}(\alpha)z + |\alpha|^2$$

 $z^5 - 1 = (z-z_0)(z-z_1)(z-z_2)(z-z_3)(z-z_4)$
 $= (z-1)(z-z_1)(z-\overline{z_1})(z-z_2)(z-\overline{z_2})$
 $= (z-1)(z^2 - (2\operatorname{Re}z_1)z + |z_1|^2)(z^2 - (2\operatorname{Re}z_2)z + |z_2|^2)z$
 $= (z-1)(z^2 - 2z\cos\frac{2\pi}{5} + 1)(z^2 - 2z\cos\frac{4\pi}{5} + 1)$

(g) (i)
$$z^3 = -1$$

 $= 1 \times \operatorname{cis}(\pi)$
 $= \operatorname{cis}(2k+1)\pi$
 $z = \left[\operatorname{cis}(2k+1)\pi\right]^{1/3}$
 $z = \operatorname{cis}(2k+1)\frac{\pi}{3}$ (deMoivre's Theorem)
 $k = 0$: $z = \operatorname{cis}\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$
 $k = 1$: $z = \operatorname{cis}\frac{3\pi}{3} = -1$
 $k = -1$: $\operatorname{cis}\left(-\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$
(ii) $z^3 + 1 = (z+1)(z^2 - z+1)$
 $\omega^2 = -1, \omega \neq -1$
 $\therefore \omega^2 + 1 = (\omega + 1)(\omega^2 - \omega + 1) = 0$
 $\therefore \omega^2 - \omega + 1 = 0$ ($\because \omega \neq -1$)
 $\therefore \omega^2 + 1 = \omega$
(iii) $(1 - \omega)^{1/2} = (-\omega^2)^{1/2}$ (from (ii))
 $= (\omega^3)^8$
 $= (-1)^8$
 $= 1$
(iv) $(z - \omega^2)(z + \omega) = 0$
 $z^2 + (\omega - \omega^2)z - \omega^3 = 0$
 $\therefore z^2 + (1)z - (-1) = 0$ (from (ii))
 $\therefore z^2 + z + 1 = 0$
OR more simply since $z^3 + 1 = (z+1)(z^2 - z + 1)$
and the three roots of -1 are so that $z^2 - z + 1 = 0$ must have roots $\omega, -\omega^2$.
So let $y = -z$ and $y^2 + y + 1 = 0$ MUST have roots $-\omega, \omega^2$.

Question 2

3

(b) i.
$$\alpha+\beta+\gamma=0,$$

$$\alpha\beta+\alpha\gamma+\beta\gamma=A,$$

$$\alpha\beta\gamma=-B.$$
 Now,
$$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta\gamma+\alpha\gamma+\alpha\beta}{\alpha\beta\gamma},$$

$$=-\frac{A}{B}.$$
 Also,
$$(\alpha+\beta+\gamma)^2=\alpha^2+\beta^2+\gamma^2+2(\alpha\beta+\alpha\gamma+\beta\gamma).$$

$$\therefore \alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\alpha\gamma+\beta\gamma),$$

$$=0-2A.$$

$$=-2A.$$

Method 2:

$$P'(x) = 3x^2 + A.$$

If A > 0 then P(x) is monotonic increasing so there can be only one real root. But there are 3 real roots so A < 0.

iii. Put
$$X=x^2$$
.
$$\therefore x=\sqrt{X}.$$

$$X\sqrt{X}+A\sqrt{X}+B=0,$$

$$\sqrt{X}(X+A)=-B,$$

$$X(X^2+2XA+A^2)=B^2.$$
 New equation is $x^3+2Ax^2+A^2x-B^2=0.$

- (c) i. If a+ib is a complex zero of the polynomial P(x) of degree $n \ge 1$ with real coefficients, then a-ib is also a zero of P(x).
 - ii. Let the roots be α , 1+i, 1-i, then $z^3+pz^2+qz+6=(z-\alpha)(z-1-i)(z-1+i),$ $=(z-\alpha)(z^2-2z+2),$ $=z^3-(\alpha+2)z^2+(2\alpha+2)z-2\alpha.$ Equating coefficients gives $\alpha=-3$.

1

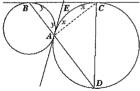
Equating coefficients gives
$$\alpha = -3$$
.
 $p = -(-3 + 2)$,
 $= 1$.
 $q = -6 + 2$,
 $= -4$.

- (d) i. There are $^{12}\mathrm{C}_4$ ways of getting the first group and $^8\mathrm{C}_4$ ways of getting the second group leaving the third group. As the group order does not matter, we have $\frac{^{12}\mathrm{C}_4 \times ^8\mathrm{C}_4}{3!} = 5775.$
 - ii. There are ${}^6C_2 \times {}^6C_2$ ways of getting the first and ${}^4C_2 \times {}^4C_2$ ways of getting the second group, leaving the third group. As before, the group order does not matter, so we have $\frac{\left({}^6C_2 \times {}^4C_2\right)^2}{3!} = 1350.$ Note that we are not asked to arrange the people within the groups, only to form the groups.
- (e) i. Method 1: $z_2=2iz_1 \text{ (Twice the length and rotated anti-clockwise by 90°),} \\ iz_2=-2z_1, \\ \therefore 2z_1+2iz_2=0. \\ \text{Method 2:} \\ \text{Let } z_1=a+ib,$

Let
$$z_1 = a + ib$$
,
 $z_2 = 2i(a + ib)$,
 $= 2ai - 2b$.
 $\therefore 2z_1 = 2a + 2bi$,
 $iz_2 = -2a - 2bi$.
So $2z_1 + iz_2 = 0$.

Radius =
$$\frac{1}{2}|z_1 - z_2|$$
,
= $\frac{1}{2}|z_1 - 2z_1i|$,
= $\frac{1}{2}|z_1||1 - 2i|$,
= $\frac{1}{2}|z_1|\sqrt{1^2 + 2^2}$,
= $\frac{\sqrt{5}}{2}|z_1|$.
 $\therefore |z - z_1(\frac{1}{2} + i)| = \frac{\sqrt{5}}{2}|z_1|$
Method 2:
Centre = $\frac{a - 2b}{2} + \frac{i}{2}(b + 2a)$,
= $\frac{a + ib}{2} + \frac{2ai - 2b}{2}$,
= $\frac{z_1}{2} + \frac{z_2}{2}$,
= $\frac{z_1}{2} - \frac{2z_1}{2i} \times \frac{i}{i}$,
= $z_1(\frac{1}{2} + i)$.
Radius² = $(\frac{a - 2b}{2})^2 + (\frac{b + 2a}{2})^2$,
= $\frac{a^2 - 4ab + 4b^2 + b^2 + 4ab + 4a^2}{4}$
= $\frac{5a^2 + 5b^2}{4}$.
Radius = $\frac{\sqrt{5}}{2}\sqrt{a^2 + b^2}$,
= $\frac{\sqrt{5}}{2}|z_1|$
 $\therefore |z - z_1(\frac{1}{2} + i)| = \frac{\sqrt{5}}{2}|z_1|$

(f) Method 1:



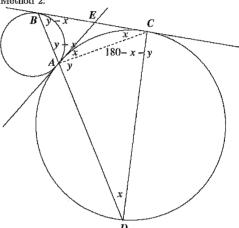
Construct the common tangent at A cutting BC at E. Join AC.

Let $A\widehat{C}E = x$, $E\widehat{B}A = y$.

EC = EA = EB (equal tangents from external point),

 $E\widehat{C}A = E\widehat{A}C = x$ (equal angles of isosceles \triangle), $E\widehat{B}A = B\widehat{A}E = y$ (equal angles of isosceles \triangle). $2x + 2y = 180^{\circ}$ (angle sum of $\triangle ABC$). $x + y = 90^{\circ} = B\widehat{A}E.$ $\hat{C}\widehat{A}D = 90^{\circ}$ (supplementary to $B\widehat{A}E$), ... CD is a diameter (angle in a semi-circle is a right angle).

Method 2:



D Construct the common tangent at A cutting BC at E.

Join AC.

4

Let
$$A\widehat{D}C = x$$
, $C\widehat{A}D = y$.

$$\widehat{ACD} = 180^{\circ} - x - y$$
 (angle sum of \triangle),

$$E\widehat{C}A = x$$
 (angle in alternate segment),

$$D\widehat{B}C = y - x$$
 (angle sum of \triangle).

EC = EA = EB (equal tangents from external point),

$$E\widehat{C}A = E\widehat{A}C = x$$
 (equal angles of isosceles \triangle),

$$E\widehat{B}A = B\widehat{A}E = y - x$$
 (equal angles of isosceles \triangle).

$$B\widehat{A}D = 2y = 180^{\circ}$$
 (supplementary angles),

$$y = 90^{\circ}$$

∴
$$y = 90^{\circ}$$

 $B\widehat{C}D = 180^{\circ} - y = 90^{\circ}$.

 \therefore CD is a diameter (radius \perp tangent at the point of tangency).

Ouestion 3

(a) Method 1:

Case 1: 3 different golfers receive prizes

 $\binom{5}{3}$ picks the golfers and then the prizes can be awarded in 3! ways ie $\binom{5}{3} \times 3! = 60$ ways.

Case 2: 1 golfer receives two prizes

Pick the golfer to receive the prize in $\binom{5}{1}$ ways and his prizes in $\binom{3}{2}$ ways.

Then the remaining prize can go to one of the 4 others

ie
$$\binom{5}{1} \times \binom{3}{2} \times \binom{4}{1} = 60$$
 ways

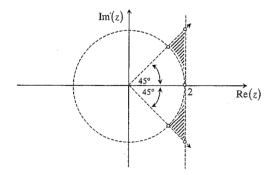
Total = 60 + 60 = 120

Method 2:

There are $5^3 = 125$ ways of dividing up the prizes with no restrictions. There are 5 ways in which a golfer can get all the prizes. So there are 125 - 5 = 120 ways in dividing up the prizes so that a golfer gets no more than 2 prizes.

(b)
$$\left|\arg z\right| < \frac{\pi}{4} \implies -\frac{\pi}{4} < \arg z < \frac{\pi}{4}$$

$$z + \overline{z} < 4 \implies x < 2$$



(i) LHS =
$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n$$

= $\left(1 + i \frac{\sin \theta}{\cos \theta}\right)^n + \left(1 - i \frac{\sin \theta}{\cos \theta}\right)^n$
= $\left(\frac{\cos \theta + i \sin \theta}{\cos \theta}\right)^n + \left(\frac{\cos \theta - i \sin \theta}{\cos \theta}\right)^n$
= $\frac{\left[\operatorname{cis}\theta\right]^n + \left[\operatorname{cis}(-\theta)\right]^n}{\cos^n \theta}$
= $\frac{\operatorname{cis}n\theta + \operatorname{cis}(-n\theta)}{\cos^n \theta}$ (deMoivre's Theorem)
= $\frac{2\cos n\theta}{\cos^n \theta}$ ($z + \overline{z} = 2\operatorname{Re} z$)
= RHS

(ii)
$$(1+z)^4 + (1-z)^4 = \frac{2\cos 4\theta}{\cos^4 \theta} \text{ where } z = i\tan \theta \text{ from (i)}$$

$$(1+z)^4 + (1-z)^4 = 0 \Leftrightarrow \frac{2\cos 4\theta}{\cos^4 \theta} = 0$$

$$\therefore \cos 4\theta = 0$$

$$\therefore 4\theta = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$$

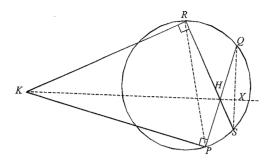
$$\therefore \theta = \pm \frac{\pi}{8}, \pm \frac{3\pi}{8}$$

$$\therefore z = i\tan \theta \Rightarrow z = i\tan\left(\pm \frac{\pi}{8}\right), i\tan\left(\pm \frac{3\pi}{8}\right)$$

$$\therefore z = \pm i\tan\left(\frac{\pi}{8}\right), \pm i\tan\left(\frac{3\pi}{8}\right)$$

$$[\because \tan(-x) = -\tan(x)]$$

(i) (d)



Join QS and produce KH to intersect with QS at X. Join RP

(ii) PKRH is a cyclic quadrilateral (α)

(opposite angles are supplementary)

 $\angle PKH = \angle PRH$

(angles in the same segment)

 $\angle PRH = \angle PQS$

(angles in the same segment)

 $\therefore \angle PKH = \angle PQS$

 $(\because \angle KPH = 90^{\circ})$

 $\angle QHX = \angle PHK$

(vertically opposite angles)

 $\therefore \angle QHX + \angle PQS = 90^{\circ}$

 $\angle PHK + \angle PKH = 90^{\circ}$

 $(\because \angle PKH = \angle PQS)$

 $\therefore \angle QXH = 90^{\circ}$

(angle sum of Δ)

 $\therefore KH (produced) \perp QS$

If α is a real root of the equation $x^3 + ux + v = 0$ then $\alpha^3 + u\alpha + v = 0$

Now
$$x^3 + ux + v = (x - \alpha)(x^2 + Ax + B)$$

$$(x-\alpha) \begin{vmatrix} x^2 + \alpha x + (u + \alpha^2) \\ (x-\alpha) \end{vmatrix} x^3 + 0x^2 + ux + v$$

$$x^2 - \alpha x^2$$

$$(x-\alpha) \begin{vmatrix} 0 + \alpha x^2 + ux \\ (x-\alpha) \end{vmatrix} 0 + (u + \alpha^2)x + v$$

$$(u + \alpha^2)x - (u + \alpha^2)\alpha$$

$$0$$

$$v + (u + \alpha^2)\alpha = 0$$

$$\therefore x^3 + ux + v = (x - \alpha) \left[x^2 + \alpha x + (u + \alpha^2) \right]$$

With $x^2 + \alpha x + (u + \alpha^2) = 0$ to have real roots then

$$\Delta = \alpha^2 - 4\left(u + \alpha^2\right) = -3\alpha^2 - 4u \ge 0$$

$$\therefore 3\alpha^2 + 4u \le 0$$