

2004 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 2

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black or blue pen.
- Board approved calculators may be used
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.
 Section A (Questions 1 - 3), Section B
 - Questions 4 5) and Section C
 (Questions 6 7).
- Start each NEW section in a separate answer booklet.

Total Marks - 75 Marks

- Attempt Sections A C
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 78 Attempt Questions 1 – 7 All questions are NOT of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Question 1 (15	i marks)	Marks
(a)	Evaluate $\int_0^3 \frac{x dx}{\sqrt{16 + x^2}}$	3
(b)	By completing the square first, find	2
	$\int \frac{dx}{x^2 + 6x + 13}$	
(c)	Use integration by parts to find	2
	$\int xe^{-x}dx$	
(d)	Find	3
	$\int \cos^3 \theta \ d\theta$	
(e) (i)	Find real numbers A, B, and C such that	3
	$\frac{x^2 - 4x - 1}{(1 + 2x)(1 + x^2)} = \frac{A}{1 + 2x} + \frac{Bx + C}{1 + x^2}$	
(ii)	Hence find $\int \frac{x^2 - 4x - 1}{(1 + 2x)(1 + x^2)} dx$	2

Page 2 of 8

Question 2 (10 marks)

Marks

2

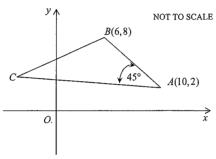
(a) On separate Argand diagrams, sketch the locus defined by:

$$(i) 2|z| = z + \overline{z} + 2$$

$$|z^2 - (\overline{z})^2| \ge 4$$

(iii)
$$\arg(z-1) - \arg(z+1) = -\pi/3$$

(b)



 \triangle ABC is drawn in the Argand diagram above where \angle BAC = 45°, A and B are the points (10,2) and (6,8) respectively.

The length of side AC is twice the length of side AB.

Find

- (i) the complex number that the vector \overrightarrow{AB} represents the complex number -4 + 6i;
- (ii) the complex number that the point C represents.

Question 3 (12 marks)

(a) The quadratic equation $x^2 - x + K = 0$, where K is a real number, has two distinct positive real roots α and β .

(i) Show that
$$0 < K < \frac{1}{4}$$

(ii) Show that
$$\alpha^2 + \beta^2 = 1 - 2K$$
 and deduce that $\alpha^2 + \beta^2 > \frac{1}{2}$

(iii) Show that
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} > 8$$

Page 3 of 8

SECTION A continued

Question 3 continued			Marks
(b)	(i)	Show, using De Moivre's Theorem, that $z = \omega$, where $\omega = \sqrt{2} + i\sqrt{2}$ satisfies $z^4 = -16$. Hence write down, in the form $x + iy$ where x and y are real, all the other solutions of $z^4 = -16$.	3
	(ii)	Hence write z^4+16 as a product of two quadratic factors with real coefficients.	2
	(iii)	Show that $\omega + \frac{\omega^3}{4} + \frac{\omega^5}{16} + \frac{\omega^7}{64} = 0$	2

SECTION B (Use a SEPARATE writing booklet)

Question 4 (8 marks)

Marks

2

2

2

(a) Evaluate

(i)
$$\int_0^a x\sqrt{a-x}\,dx$$

$$\int_0^1 \frac{\sin^{-1} x}{\sqrt{1+x}} dx$$

(b) (i) Using the substitution $t = \tan \frac{x}{2}$ show that

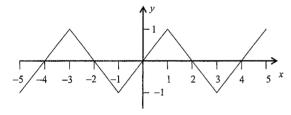
$$\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x + \sin x} = \ln x$$

(ii) Hence, by substituting $u = \frac{\pi}{2} - x$ evaluate

$$\int_0^{\frac{\pi}{2}} \frac{x \, dx}{1 + \cos x + \sin x}$$

Question 5 (11 marks)

(a)



The diagram is a sketch of the function y = h(x) for $-5 \le x \le 5$. On separate diagrams sketch each of the following:

$$(i) y = h(x+1) 1$$

(ii)
$$y = \frac{1}{h(x)}$$

(iii)
$$y = h(|x|)$$

(iv)
$$y = \sqrt{h(x)}$$

$$(v) y = h(\sqrt{x})$$

(b) Sketch the curve $9y^2 = x(x-3)^2$ showing clearly the coordinates of any turning point.

Page 5 of 8

SECTION C (Use a SEPARATE writing booklet)

Marks

3

Question 6 (9 marks)

A firework missile of mass 0.2 kg is projected vertically upwards from rest by means of a force that decreases uniformly in 2 seconds from 2g newtons to zero and thereafter ceases. Assume no air resistance and that g is the acceleration due to gravity.

(i) If the missile has an acceleration of a m/s² at time t seconds, show that

$$a = \begin{cases} g(9-5t) & t \le 2\\ -g & t > 2 \end{cases}$$

[Hint: Draw a diagram showing the forces on the missile.]

- ii) Hence find:
 - (α) the maximum speed of the missile;
 - 3) the maximum height reached by the missile.

Marks

A particle of mass 1 kg is projected from a point O with a velocity u m/s along a smooth horizontal table in a medium whose resistance is Rv^2 newtons when the particle has velocity v m/s. R is a constant, with R > 0.

(i) Show that the equation of motion governing the particle is given by

$$\ddot{x} = -Rv^2$$

where x is the horizontal distance travelled from O.

(ii) Hence show that the velocity, v m/s, after t seconds is given by

$$t = \frac{1}{R} \left(\frac{1}{\nu} - \frac{1}{u} \right)$$

An equal particle is projected from O simultaneously with the first particle, but vertically upwards with velocity u m/s in the SAME medium.

(iii) Show that the equation of motion governing the second particle is given by

$$\ddot{y} = -(g + Rv^2)$$

where $g \text{ m/s}^2$ is the acceleration due to gravity and y represents the vertical distance from O where the particle has a velocity of v m/s

(iv) Hence show that the velocity V m/s of the first particle when the second one is momentarily at rest is given by

$$\frac{1}{V} = \frac{1}{u} + \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right), \text{ where } Ra^2 = g$$

THIS IS THE END OF THE PAPER

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1}, x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$
NOTE: $\ln x = \log_{e} x, x > 0$

2004

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 2

Mathematics Extension 2

Sample Solutions

Section	Marker
A	Mr Hespe
В	Mr Parker
С	Mr Kourtesis

3 1. (a) Method 1:

$$I = \int_{0}^{3} \frac{x dx}{\sqrt{16 + x^{2}}}, \quad \text{pit } u = 16 + x^{2}$$

$$du = 2x dx$$

$$du = 2x dx$$

$$when $x = 0, \quad u = 1$

$$x = 3, \quad u = 1$$

$$= \frac{1}{2} \left[2u^{\frac{1}{2}} \right]_{16}^{25},$$

$$= 5 - 4,$$

$$= 1.$$$$

Method 2:

$$I = \int_{4}^{5} \frac{u du}{u}, \quad \text{put } u^{2} = 16 + x^{2}$$

$$= u \int_{4}^{5} \frac{u du}{u}, \quad \text{when } x = 0, \quad u = 4$$

$$= u \int_{4}^{5} \frac{u du}{u}, \quad x = 3, \quad u = 5$$

Method 3:

$$I = \int_{0}^{\tan^{-1}\frac{\lambda}{4}} \frac{4\tan\theta \cdot 4\sec^2\theta d\theta}{4\sec\theta}, \quad \text{put } x = 4\tan\theta \\ dx = 4\sec^3\theta d\theta \\ = 4\sec\theta \int_{0}^{\tan^{-1}\frac{\lambda}{4}}, \quad x = 3, \quad \theta = \tan^{-1}\theta \\ = 4\left\{\frac{x}{4} - 1\right\}, \\ = 1.$$

Method 4:

Method 4: put
$$u = x^2$$

$$I = \frac{1}{2} \int_0^9 \frac{du}{\sqrt{16 + u}}, \quad \text{put } u = x^2$$

$$= \left[\frac{1}{2} \times 2 \times \sqrt{16 + u}\right]_0^9, \quad \text{when } x = 0, \quad u = 0$$

$$= 5 - 4, \quad u = 9$$

$$= 1.$$

Method 5:

$$I = \frac{1}{3} \int_{0}^{2} \frac{d(x^{2})}{\sqrt{16 + x^{2}}},$$

$$= \left[\frac{1}{2} \times 2 \times \sqrt{16 + x^{2}}\right]_{0}^{3},$$

$$= 5 - 4,$$

$$= 1.$$

$$\begin{array}{ll} \boxed{2} & \text{(b)} & \mathrm{I} = \int \frac{dx}{(x^2 + 6x + 9) + 13 - 9}, \\ & = \int \frac{dx}{(x + 3)^2 + 4}, \\ & = \frac{1}{2} \tan^{-1} \left(\frac{x + 3}{2}\right) + \mathrm{C}. \end{array}$$

$$\begin{array}{lll} & \text{(c)} & \text{I} = \int x e^{-x} dx, & u = x, & v' = e^{-x} \\ & = -x e^{-x} + \int e^{-x} dx, & v = -e^{-x} \\ & = -x e^{-x} - e^{-x} + C. \end{array}$$

$$\begin{array}{ll} \boxed{3} & \text{(d) Mothod 1:} \\ & \mathrm{I} = \int \cos^2\theta \cdot \cos\theta d\theta, & \mathrm{put} \sin\theta = u \\ & = \int (1-\sin^2\theta) \cdot \cos\theta d\theta, \\ & = \int (1-u^2)du, \\ & = u - \frac{1}{2}u^3 + \mathrm{C}, \\ & = \sin\theta - \frac{1}{3}\sin^3\theta + \mathrm{C}. \end{array}$$

Method 2:

$$I = \int \cos^2 \theta \cdot \cos \theta d\theta,$$

$$= \int (1 - \sin^2 \theta) \cdot d \sin \theta,$$

$$= \sin \theta - \frac{1}{3} \sin^3 \theta + C.$$

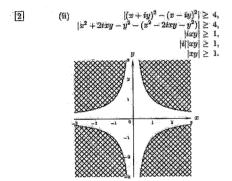
Method 3:
$$I = \int \cos^2 \theta \cdot \cos \theta d\theta, \qquad u = \cos^2 \theta, \qquad v' = \cos \theta$$
$$= \cos^2 \theta \sin \theta + 2 \int \sin^2 \theta \cos \theta d\theta, \qquad u' = -2\sin \theta \cos \theta, \qquad v = \sin \theta$$
$$= \cos^2 \theta \sin \theta + 2 \int \cos \theta (1 - \cos^2 \theta) d\theta,$$
$$= \cos^2 \theta \sin \theta + 2 \sin \theta - 2 \int \cos^2 \theta d\theta,$$
$$3I = \cos^2 \theta \sin \theta + 2 \sin \theta + c,$$
$$I = \frac{1}{3} \left\{ \cos^2 \theta \sin \theta + 2 \sin \theta \right\} + C.$$

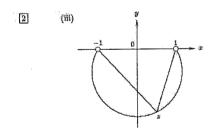
(a) (i) Method 1:
$$x^{2}-4x-1 = A(1+x^{2}) + (Bx+C)(1+2x).$$
Put $x = -\frac{1}{2}$,
$$\frac{1}{4}+2-1 = A(1\frac{1}{4}),$$
 $A = 1$.
Also, $x^{2}-4x-1 = x^{2}(A+2B) + x(B+2C) + (A+C)$, so $A+2B = 1$,
$$1+2B = 1$$
,
$$2B = 0$$
,
$$B = 0$$
.
And $B+2C = -4$,
$$C = -4$$
,
$$C = -2$$
.
Method 2:
$$x^{2}-4x-1$$
,
$$\frac{2C}{(1+2x)(1+x^{2})} = \frac{A}{1+2x} + \frac{Bx+C}{x^{2}+1}$$
.

$$\begin{array}{c} U = -2. \\ \frac{x^2 - 4x - 1}{(1 + 2x)(1 + x^2)} = \frac{A}{1 + 2x} + \frac{Bx + C}{x^2 + 1}. \\ \lim_{x \to -\frac{1}{2}} \left\{ \frac{x^2 - 4x - 1}{1 + x^2} \right\} = \lim_{x \to -\frac{1}{2}} \left\{ A + \left(\frac{Bx + C}{1 + x^2} \right) \times (1 + 2x) \right\}, \\ \frac{\frac{1}{4} + 2 - 1}{1 + \frac{1}{4}} = A, \\ A = 1. \\ \lim_{x \to i} \left\{ \frac{x^2 - 4x - 1}{1 + 2x} \right\} = \lim_{x \to i} \left\{ \left(\frac{A}{1 + 2x} \right) \times (1 + x^2) + Bx + C \right\}, \\ \frac{-1}{1 + 2i} = Bi + C, \\ -2 - 4i = Bi + C - 2B + 2iC, \\ \therefore C - 2B = -2, \\ B + 2C = -4, \\ 2C - 4B = -4, \\ 5B = 0, \\ B = 0, \\ C = -2. \end{array}$$

[2] (ii)
$$I = \frac{1}{2} \int \frac{2xdx}{1+2x} - 2 \int \frac{dx}{1+x^2},$$

= $\frac{1}{2} \ln(1+2x) - 2 \tan^{-1} x + C.$





(b) (i)
$$\overrightarrow{BA} = (10-6) + i(2-8),$$

= 4-6i.

Note that the question was in error: what was meant was \overrightarrow{AB} . Both answers were accepted, 4-6i or -4+6i.

I 3. (a) (i) Roots
$$\alpha$$
, β positive implies $\alpha\beta>0$, i.e. $\frac{n}{\alpha}>0$ or $K>0$.

Also, for distinct real roots, $\Delta=1-4K>0$, $1>4K$, $K<\frac{1}{4}$.

So, $0< K<\frac{1}{4}$.

[2] (ii)
$$\alpha + \beta = 1$$
, $\alpha\beta = K$, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$, $\alpha^2 + \beta^2 = 1 - 2K$.

Method 1: $K < \frac{1}{4}$; $\alpha^2 + \beta^2 > 1 - 2\left(\frac{1}{4}\right)$ ("greater than" as we are subtracting "less than"), i.e. $\alpha^2 + \beta^2 > \frac{1}{2}$,

$$\begin{aligned} & \text{Method 2:} \\ & 2K = 1 - (\alpha^2 + \beta^2), \\ & K = \frac{1 - (\alpha^2 + \beta^2)}{2} < \frac{1}{4}, \\ & - (\alpha^2 + \beta^3) < -\frac{1}{2}, \\ & \therefore \ \alpha^3 + \beta^2 > \frac{1}{2}. \end{aligned}$$

[2] (iii)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2},$$

$$= \frac{1 - 2K}{K^2}, \text{ (from above)}.$$
Now, also from above,
$$\alpha^2 + \beta^2 > \frac{1}{2},$$

$$\alpha^2 \beta^2 < (\frac{1}{4})^2,$$

$$\frac{1}{\alpha^2 \beta^2} > 16.$$
So
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} > 16 \times \frac{1}{2},$$

$$\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} > 8.$$

$$\begin{array}{ll} \boxed{2} & \text{(ii)} \quad z^4 + 16 = \left(z - \sqrt{2} - \sqrt{2}i\right) \left(z - \sqrt{2} + \sqrt{2}i\right) \left(z + \sqrt{2} + \sqrt{2}i\right) \left(z + \sqrt{2} - \sqrt{2}i\right), \\ & = \left(z^2 - 2\sqrt{2}z + 4\right) \left(z^2 + 2\sqrt{2}z + 4\right). \end{array}$$

$$\begin{array}{ll} \boxed{2} & \text{(iii) Method 1:} \\ \omega = 2 \mathrm{cis} \frac{\pi}{4}, \\ \omega^3 = 2 \mathrm{cis} \frac{3\pi}{4}, \\ \omega^5 = 32 \mathrm{cis} \frac{5\pi}{4}, \\ \omega^7 = 128 \mathrm{cis} \frac{7\pi}{64}, \\ \omega + \frac{\omega^3}{4} + \frac{\omega^3}{16} + \frac{\omega^7}{64} = 2 \mathrm{cis} \frac{\pi}{4} + 2 \mathrm{cis} \frac{3\pi}{4} + 2 \mathrm{cis} \frac{5\pi}{4} + 2 \mathrm{cis} \frac{7\pi}{4}, \\ & = \omega_0 + \omega_1 + \omega_2 + \omega_3, \text{ the sum of the roots,} \\ & = 0. \\ \mathrm{Method 2:} \\ \frac{64\omega + 16\omega^3 + 4\omega^5 + \omega^7}{64} = \left(16\omega(4 + \omega^2) + \omega^8(4 + \omega^2)\right) \times \frac{1}{64}, \\ & = \omega(16 + \omega^4)(4 + \omega^2) \times \frac{1}{64}. \end{array}$$

But
$$16 + \omega^4 = 0$$
,
 $\therefore \omega + \frac{\omega^3}{4} + \frac{\omega^5}{16} + \frac{\omega^7}{64} = 0$.

Method 3:

$$\omega^{4} = -16,$$

$$\omega + \frac{\omega^{3}}{4} + \frac{\omega^{5}}{16} + \frac{\omega^{7}}{64} = \omega + \frac{\omega^{3}}{4} + \frac{-16\omega}{16\omega} + \frac{-16\omega^{5}}{64},$$

$$= \omega - \omega + \frac{\omega^{3}}{4} - \frac{\omega^{3}}{4},$$

$$= 6.$$

Method 4:

In the geometric series given, $a = \omega$ and $r = \frac{\omega^2}{4}$.

$$S_4 = rac{\omega \left(1 - \left(rac{\omega^2}{4}\right)^4\right)}{1 - rac{\omega^2}{4}}$$
, note that $rac{\omega^8}{256} = rac{(-16)^3}{256} = 1$, $= rac{\omega (1-1)}{1 - rac{\omega^2}{4}}$, $= 0$.

$$(4)(a)(i) \int_{0}^{a} x \sqrt{a - x} \, dx$$

$$= \int_{a}^{0} (a - u) \sqrt{u} (-du)$$

$$= \int_{0}^{a} (a - u) u^{1/2} \, du$$

$$= \int_{0}^{a} (a u^{1/2} - u^{3/2}) du$$

$$= \left[\frac{2a}{3} u^{3/2} - \frac{2}{5} u^{5/2} \right]_{0}^{a}$$

$$= \left(\frac{2a^{2}}{3} - \frac{2a^{2}}{5} \right) \sqrt{a}$$

$$= \frac{4a^{2}}{15} \sqrt{a} = \frac{4a^{3/2}}{15}$$

(ii)
$$\int_{0}^{1} \frac{\sin^{-1} x}{\sqrt{1+x}} dx$$

$$= \int_{0}^{1} \left((1+x)^{-1/2} \times \sin^{-1} x \right) dx$$

$$= 2\sqrt{1+x} \sin^{-1} x \Big|_{0}^{1} - \int_{0}^{1} \frac{2\sqrt{1+x}}{\sqrt{1-x^{2}}} dx$$

$$= \sqrt{2}\pi - 2\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx$$

$$= \sqrt{2}\pi + 2\int_{0}^{1} -(1-x)^{-1/2} dx$$

$$= \sqrt{2}\pi + 2 \times 2\sqrt{1-x} \Big|_{0}^{1}$$

$$= \sqrt{2}\pi - 4$$

(b)(i)
$$\int_{0}^{1} \frac{(2dt/1+t^{2})}{1+(1-t^{2}/1+t^{2})+(2t/1+t^{2})}$$

$$= \int_{0}^{1} \frac{2dt}{1+t^{2}+1-t^{2}+2t}$$

$$= \int_{0}^{1} \frac{2dt}{2+2t}$$

$$= \int_{0}^{1} \frac{dt}{1+t}$$

$$= \left[\ln|1+t|\right]_{0}^{1}$$

$$= \ln 2$$

$$t = \tan\frac{x}{2}$$

$$\cos x = \frac{1-t^{2}}{1+t^{2}}, \sin x = \frac{2t}{1+t^{2}}$$

$$dx = \frac{2dt}{1+t^{2}}$$

$$4 \text{ (b) (ii)}$$

$$I = \int_{0}^{\frac{\pi}{2}} \frac{x dx}{1 + \sin x + \cos x}$$

$$= \int_{\frac{\pi}{2}}^{0} \frac{-\left(\frac{\pi}{2} - u\right) du}{1 + \sin\left(\frac{\pi}{2} - u\right) + \cos\left(\frac{\pi}{2} - u\right)}$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2} - u\right) du}{1 + \cos u + \sin u}$$

$$u = \frac{\pi}{2} - x \Rightarrow x = \frac{\pi}{2} - u; dx = -du$$

$$x = 0 \Rightarrow u = \frac{\pi}{2}; x = \frac{\pi}{2} \Rightarrow u = 0$$

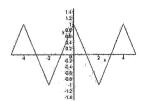
$$\therefore 2I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} du}{1 + \cos u + \sin u} = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{du}{1 + \cos u + \sin u} = \frac{\pi}{2} \times \ln 2$$

$$\therefore I = \frac{\pi \ln 2}{4}$$

5 (a)

(i)
$$y = h(x+1)$$

Move the curve 1 unit to the left



(ii)
$$y = \frac{1}{h(x)}$$

Where h(x) = 0 there are vertical asymptotes.

Where $h \to 0^+, y \to \infty$

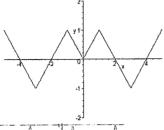
Where $h \to 0^-, y \to -\infty$

Where h = 1, the reciprocal is pointed ie not smooth.

(See the bottom diagram on the right.)

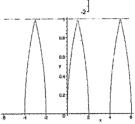
(iii)
$$y = h(|x|)$$
.

Erase the LHS of h and then reflect the RHS, so that the result is an eyen function.



(iv)
$$y = \sqrt{h(x)}$$

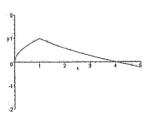
First erase the graph where h < 0. Where $0 < h < 1 \Rightarrow \sqrt{h} > h$ Where y = 1, the graph is *pointed*, ie not smooth. Where y = 0, vertical tangents.



(v)
$$y = h(\sqrt{x})$$

Domain: $x \ge 0$
Note that $0 \le x \le 4 \Rightarrow 0 \le \sqrt{x} \le 2$
So $h(\sqrt{4}) = h(2) = 0$

The graph for $0 \le x \le 4$ will be the same y values for h over $0 \le x \le 2$.



First draw $9y = x(x-3)^2$

Clearly x intercepts are at x = 0 and x = 3 with x = 3 is a double root.

$$y = x(x-3)^2/9 \Rightarrow z' = \frac{1}{9} \left(2x(x-3) + (x-3)^2 \right) = \frac{(x-3)}{9} \left(2x + x - 3 \right)$$

$$\therefore y' = \frac{1}{9} (x-3)(3x-3) = \frac{1}{3} (x-1)(x-3) = \frac{1}{3} (x^2 - 4x + 3)$$

$$\therefore y'' = \frac{1}{9} (2x-4)$$

Stationary points when $y' = 0 \Rightarrow x = 1,3$ ie $\left(1, \frac{4}{9}\right) & (3,0)$

At
$$x = 1$$
, $y'' < 0 \Rightarrow \left(1, \frac{4}{9}\right)$ is a maximum.

The graph in Fig I is the graph of z. The horizontal line is the line y = 1.

So with $y = \frac{1}{3}\sqrt{x(x-3)^2}$, the maximum turning point remains the same except it is now $(1,\frac{2}{3})$.

Any part of the graph in Fig I below the x – axis is not defined for the square root. Where 0 < y < 1 we get $\sqrt{y} > y$ and where y > 1 we get $\sqrt{y} < y$.

The x = 0 intercept will have a vertical tangent, the x = 3 intercept is not smooth. This is shown in Fig 2.

We need to draw $y = \pm \frac{1}{3} \sqrt{x(x-3)^2}$: the \pm means that the top part of the graph will be reflected.

The final graph is Fig 3. With turning points $(1,\pm\frac{2}{3})$

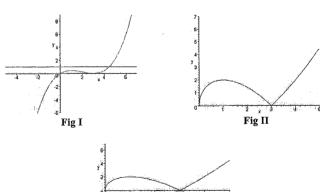


Fig III

Question 6



$$F = g(2-t)$$

$$\therefore ma = F - mg = g(2-t) - mg$$

$$\therefore a = \frac{g(2-t)}{0\cdot 2} - g$$

$$\therefore a = 5g(2-t) - g = g(9-5t)$$

$$\therefore a = -g$$

.".
$$x = -\frac{gt^2}{2} + \log t - \frac{20q}{3}$$

When
$$t = 10$$
, $x = \frac{130g}{3}$ m

(i) Question 7

$$Rv^{2}$$
 Rv^{2}
 Rv^{2}

Since $w=1 \implies x=-Rv^{2}$

(ii)
$$\frac{dv}{dt} = -Rv^{2}$$

$$\int_{u}^{v} \frac{dv}{v^{2}} = -R\int_{0}^{t} dt$$

$$\left[-\frac{1}{v}\right]_{u}^{v} = -Rt$$

$$-\frac{1}{v} + \frac{1}{u} = -Rt$$

$$t = \frac{1}{R}\left(\frac{1}{v} - \frac{1}{u}\right)$$

(iii)

The of
$$\mathbb{R}^{v^{2}}$$
 $M_{y}^{2} = -Mg - \mathbb{R}^{v^{2}}$
 $M = 1 \implies \dot{y} = -(g + \mathbb{R}^{v^{2}})$