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General Instructions

Working time — 2 Hours

Reading time — 5 Minutes

‘Write using black or blue pen

Board approved calculators may

beused -

= All necessary working should be
shown in every question if full marks
are to be awarded

»  Marks may not be awarded for messy or
badly arranged work.

= Hand in your answer booklets in 4
sections. Section A (Questions 1 and 2),
Section B (Questions 3 and 4), Section
C (Questions 5 and 6) and Section D

(Question 7)

This is an assessment task only and does not necessaxily reflect the content or forrfmj of the Higher School

Extension 1

Total Marks — 84
«  Attempt Questions 1 — 7.

* All QUESTIONS are of equal
value

Examiner: K Boros

STANDARD INTEGRALS

n 1 n+] .
fx dx = L one-1L x20,ifn<0
1 .
;dx =Inx, x>0
a
fcosaxdx =—sinax, a#0
. . 1
sin ax dx =——cosax, a=0
a
) 1 :
sec” ax dx =—tanax, a=0
a

. 1
‘jseca-xtanaxdx =—secax, a=0
i a

1 1 x
dx =—tan7 2
fa2+x2 a a’ a#0
b
1 1
3 2"5‘ =sin~ —, a>0, —a<x<a
a®—x

NOTE: Inx=log, x, x>0
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Section A — Start a new booklet

Question 1. (12 marks)

a) 1 .

® Evaluate J 2x 1 dx leaving your answer in exact form.
2 X"+
25 1

(ii)  Evaluate f T2 dx leaving your answer in exact form.
L Xt

-b) Find the gradient of the tangent to the curve y = tan™ (sin x) at x=0.
9 Solve for x; - —~1~<3..
x+1
9 Give the general solution of the equation, cos(9+7r) !
ive the general solution o N — ==
g q 2 \/5

© If #(x)=8x", then find the inverse function /' (x).

Question 2. (12 marks)
a) Find the co-ordinates of the point P that divides the interval 4(—4,~6) and

B(6,~1) externally in the ratio 3:1.
b) @) Sketch the graph of y ={2x—4/.

(ii)  Using your graph, or otherwise, solve the inequation |2x—4[>x.

— e 3
<) Use the substitution u =1+ x to evaluate, L xv1+x.dx.

~d)  Solve forn, 2x"C, =5x"C,.
e) What is the least distance between the circle x* +y* +2x+4y =1 and the line

3x+%= 62 (Leave your answer in exact form.)

Ay

End of Section A
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Section B — Start a new booklet

Question 3. (12 marks)

~78)  Iftheroots of the equation, x* —2x>—~5x+1=0, are £,%,,1,.%,,
4
find Z(f,-tjl‘k)“] ,suchthat i= j=k.
i

b
) State the domain and range of the function y =2sin™ (?)

Hence sketch the curve.
©) A bow! of water heated to 100°C is placed in a coolroom where the

temperature is maintained at —5°C . After t minutes, the temperature 7°C of
. . ar
the water is changing so that 7 —k(T+5).

()  Provethat T= de™ —5 satisfies this equation and find the value
of 4.

(i) " After 20 minutes, the temperature of the water has fallen to 40°C.
How long, to the nearest minute, will the water need to be in the
coolroom before ice begins to form, (i.e. the temperature falls to
0°C).

d) ® Show that the equation Inx +x* —4x =0 has a root lying between
x=3 and x=4.

(i) By taking x=4 as a first approximation, use one application of
Newion’s Method to obtain another approximation for the ré-ot, to

. =2 decimal places. Is this newer approximation a better one?

" Explain.

Marks
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Question 4. (12 marks)

a) The points P (Zap, apz) and Q(Zaq, aqz) lie on the parabola x* =4qy . Tt is

+
given that the chord PQ has equation y = ( P > q]x —apq .

® Show that the gradient of the tangent at P is p.
(i)  Prove that if PQ passes through the focus, then the tangent at 7 is
parallel to the normal at 0.

A committee of five is to be formed from 4 Liberal senators, 3 Labor senators

b)
and 2 Democrat senators.
® How many different committees can be formed that have 3
Liberals, 1 Labor and 1 Democrat?
(i)  Ifthe committee is to be chosen at random, what is the probability
that there will be a Liberal majority in the committee?
c) ()  Express 7cosf—sin in the form Rcos(@+a), where R >0 and

0°<a<90.
@iy  Hencesolve 7cosf —sind =5 for 0" <6 <360°, giving your
answer 1o the nearest degree.
d)  Find the values of the constants @ and b if x* —2x—3 is a factor of the
polynomial P(x)=x*-3x"+ax+b.

End of Section B

Page3of 8

Mathematics Extension 1 - Trial Higher School Certificate 2006

Section C — Start a new booklet

Question 5. (12 marks)

&
_!:}k’
4

)

A soccer player 4 is x metres from a goal line of a soccer field. He takes a

shot at the goal BC, with the ball not leaving the ground.
_ 0 Show that the angle 6 within which he must shoot is given by

O =tan™ (] ng 5 ) when he is 10 metres to one side of the near
+X

goal post and 18 metres to the same side of the far post.
(i)  Find the value of x which makes this angle a maximum. (Leave
your answer in exact form).

b) A particle moves in a straight line such that its velocity ¥ m/s is given by
V =2~/2x—~1 when it is x metres from the origin. If x =% when ¢ ="0 find:
® the acceleration.

—(ii)  anexpression forx in terms of 7.

)
Find the volume of the solid obtained by rotating y =sin™ x about the p-axis

between 7 = -—% aad y =% . Answer in exact form.
d) The perimeter of a circle is increasing at 3 cm/s. Leaving your answer in

terms of #, find the rate at which the area is increasing when the perimeter is

1m.

Pace 4 nf R

Marks
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Question 6. (12 marks)

a
) Consider the following three expressions involving #, where # is a positive
integer: . 5T+3,77+5,5+7
@ By substituting values of n, show that 7" +35 is the only one of
these expressions which could be divisible by 6 for all positive
integers #.
(i)  Use mathematical induction to show that the expression 7" 45 is
in fact divisible by 6 for all positive integers n.
b SO

Not to scale

U o P w
< a >4—— b —»

In the diagram UXW is a semi-circle with O as a midpoint of diameter UW.
The point P lies on UW and XP is perpendicular to UW. The length of
UP = g units and PW = b units are shown.
a+b .
2
(i)  Show that AUXP [|[AXWWP .

()  Explain why OX =

(iﬁj - Deduce that XP =~/ab .

(iv) By using the diagram show that a ; b >+Jab .

©) The displacement x metres of a particle from the origin is given by

x =5c08 (31‘ —-765), where 7 is the time lapsed in seconds.

@ Show that ¥ =-9x.
(i1}  Find the period of the motion

Page 5of 8
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d) o,
Suppose that (5 + Zx) = Z ax".

k=0

o

@) Use the binomial theorem to write the expression for a, .

(i)  Showthar %t o 2422
a,  Sk+5

End of Section C
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Section D _— Start a new boeklet

Question 7. (12 marks)

P(h,k)

A projectile is fired from the origin with a velocity ¥ and an angle of

elevation 8, where 6 # 90°. You may assume that x =V¢cos8 and
y= —% gf* +Vitsing , where x and y are the horizontal and vertical

displacements of the projectile in metres from O at time # seconds after firing,
and g is the acceleration due to gravity.

@) Show that the Cartesian equation of the flight of the projectile is:

g 2
———x
2V cos* 9
(ii) Suppose the projectile is fired up a plane inclined at S to the

T y=xtanf-

horizontal so that 0° < £ < 8. If the projectile strikes the plane at

P(h k), show that:
he (tan 6 —tan £)2V7 cos” &
g
(1if)  Hence, show that the range OP of the projectile can be given by
B 22 sin(9~,6’)0039
geos® B

OP
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(iv)  Given the fact that 2sin(x~ B)cosx=sin(2x— f§)—sin §. Show
that the maximum value of the range of OP is given by:
¥
g(1+sin )

W) If the angle of inclination of the plane is 14°, at what angle to the
horizontal should the projectile be fired in order to attain

maximum range?
End of Examination
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QUESTION 7

X

M)t=

vecosd

2 .

3 wsin &
& "

y=- 3
2Pcos’ 3 vcosd

p = xtan & ——=——s—
? 2v% cos® @

(i)
AtP,y=k=htand,x=h
2

tan = htan 9 —— % from (i)

v? cos® 9
g
2 = hi(tan §—tan
20 cos® & ( A)
e (tan 9—tan B) 2" cos” 8
£

(i)
cos 3 ’
_ (tan 8—tan £)2v’ cos’ &
gceosf
(sm& _sinp szz cos” 3
_\cosd cosf

[from (if)] i
!

i

_ 21 sin (3—/3)0059
geos’ B

@)

OP = [sin(29-5 )2— sin B ]v (eiven)
goos” f

dOP)

@9 = PRy [2c0s(28~ Al

OP max/min cos(28—f£)=0

29—~ f3=90"

_N+B
2

4y’

¥

3

OP"= x—2sin (29— 5)

gcos
always < 0 as (29— £) <180°
0
- max val OP when & =—99—2+—4
v (sin90° -sin )
g(1-sin® B)
_v*(1-sin )
g(l-sin* )

V2

- g(l+sin 8)

Max val. OP =

W

0
max val OP when 9 = 20—;14 [from (iv)]

90° +14°

9=
2

9 =352




