

2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- · Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.

Section A (Questions 1 - 3),

Section B (Questions 4 - 5) and

Section C (Questions 6 - 8).

 Start each section in a NEW answer booklet.

Total Marks - 120 Marks

- Attempt Sections A C
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 120 Attempt Questions 1 – 8 All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Quest	ion 1 (1	5 marks)	Marks
(a)		Evaluate	
		$\int_0^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}}$	1
		$\int_0^1 \sqrt{4-x^2} dx$	1
	(iii)	$\int_{-1}^{2} x \sqrt{2-x} dx$	1
(b)		Evaluate	
()	(i)	$\int_{1}^{2} \frac{e^{2x}}{e^{x} - 1} dx$	2
	(ii)	$\int_0^{\frac{\pi}{2}} \frac{1}{4 + 5\sin x} dx$	4 .
(c)	(i)	If $I_n = \int_0^{\frac{\pi}{4}} \tan^{2n} x dx$, $n \ge 0$, show that $I_n + I_{n-2} = \frac{1}{2n-1}$	3
	(ii)	Hence, evaluate $\int_0^{\frac{\pi}{4}} \tan^6 x dx$	1
		ce	
(d)		Evaluate $\int_{1}^{x} x \ln(x^2) dx$	2

Question 2 (15 marks)

Marks

2

2

2

3

Sketch on the same axes the graphs

Question 3 (15 marks)

Marks

1

1

2

2

Hence or otherwise:

If $z = -1 + i\sqrt{3}$ and $w = 2 \operatorname{cis} \frac{\pi}{6}$ (a)

Find |z|.

(a) Solve for x, 2|x| < x+3.

1 $\arg z$.

SECTION A continued

1 Express z in the form $r \operatorname{cis} \theta$.

Sketch the curve $y = \frac{2|x|}{x+3}$.

Express $z^6 \div w^3$ in the form $r \operatorname{cis} \theta$.

Let $f(x) = \frac{3}{x-1}$. (b)

Express $\sqrt{5-12i}$ in the form a+ib. (b)

On separate diagrams sketch the graphs of the following:

y = x + 3 and y = 2|x|.

Hence describe the locus of the point which represents z on the Argand diagram if

y = f(|x|)

 $|z^2 - 5 + 12i| = |z - 3 + 2i|$

 $y^2 = f(x)$

The origin and the points representing the complex numbers z, (c) $\frac{1}{z}$ and $z + \frac{1}{z}$ are joined to form a quadrilateral.

Write down the conditions for z so that the quadrilateral will be

 $y = e^{f(x)}$

a rhombus; a square.

1

1

2

3

- Find the equation and sketch the locus of z if (d) $|z-i|=\operatorname{Im}(z)$
 - Find the least value of $\arg z$ in (i) above.

END OF SECTION A

SECTION B (Use a SEPARATE writing booklet)

Question 4 (15 marks) Marks 3-i is a zero of $P(z) = z^3 - 4z^2 - 2z + m$, where m is a real (a) 3 Find m. (b) If α , β and γ are the roots of $x^3 + px + q = 0$, find a cubic equation whose roots are α^2 , β^2 and γ^2 . _ (c) Given a real polynomial Q(x), show that if α is a root of Q(x)-x=0, then α is also a root of Q(Q(x))-x=0. (d) Use the following identity to answer the following questions. $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$ Solve $16x^5 - 20x^3 + 5x = 0$ 3 Hence show that

SECTION B continued

Question 5 (15 marks)			Marks
(a)		Let $z = \cos \theta + i \sin \theta$, show that	
	(i)	$z^n + z^{-n} = 2\cos n\theta$	1
	(ii)	$z^n - z^{-n} = 2i\sin n\theta$	1
(b)	(i)	Show that for any integer k that	2
		$\left[z - \left(\cos\frac{k\pi}{4} + i\sin\frac{k\pi}{4}\right)\right]\left[z - \left(\cos\frac{(8-k)\pi}{4} + i\sin\frac{(8-k)\pi}{4}\right)\right] = z^2 - 2z\cos\frac{k\pi}{4} + 1$	
	(ii)	Hence simplify the following products	
		(a) $ \left[z - \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right] \left[z - \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) \right] $	1
		(β) $ \left[z - \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \right] \left[z - \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) \right] $	1
(c)		Using the results of (b) above, factorise $z^4 + 1$ into 2 real quadratic factors.	2
(d)		Using (a) and (c) above, prove the identity	2
		$\cos 2\theta = 2\cos^2 \theta - 1$	
(e)		The complex numbers $z = x + iy$, $z_1 = -x + iy$ and $z_2 = -\frac{2}{z}$ are	
		represented by the points P , P_1 and P_2 in the Argand diagram respectively.	
	(i)	Show that O , P_1 and P_2 are collinear where O is the origin.	3
	(ii)	Show that $OP_1 \times OP_2 = 2$	2

END OF SECTION B

SECTION C (Use a SEPARATE writing booklet)

Question 6 (15 marks)

Marks

1

- (a) A particle of mass m is projected vertically upwards with a velocity of u ms⁻¹, with air resistance proportional to its velocity.
 - (i) Show that after a time t seconds, the height above the ground is

$$x_1 = \frac{g + ku}{k^2} (1 - e^{-kt}) - \frac{gt}{k},$$

where k is a constant and g is the acceleration due to gravity.

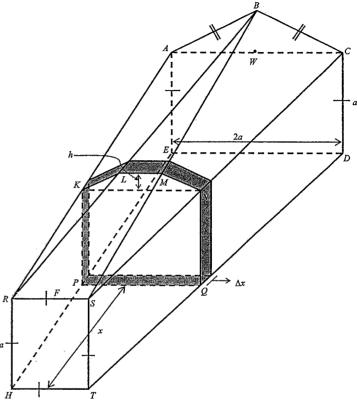
(ii) At the same time another particle of mass m is released from rest, from a height h metres vertically above the first particle. You may assume that at time t seconds, its distance from the ground is given by:

$$x_2 = h + \frac{g}{k^2} (1 - e^{-kt}) - \frac{gt}{k}$$

Show that the two particles will meet at time T where

$$T = \frac{1}{k} \ln \left(\frac{u}{u - kh} \right)$$

- (b) A vehicle of mass m moves in a straight line subject to a resistance $P + Qv^2$, where v is the speed and P and Q are constants with Q > 0.
 - (i) Form an equation of motion for the acceleration of the vehicle.
 - (ii) Hence show that if P = 0, the distance required to slow down from speed $\frac{3U}{2}$ to speed U is $\frac{m}{Q} \ln \left(\frac{3}{2} \right)$.
 - (iii) Also show that if P > 0, the distance required to stop from speed U is given by


$$D = \lambda \ln \left(1 + kU^2 \right)$$

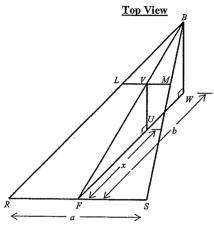
where k and λ are constants

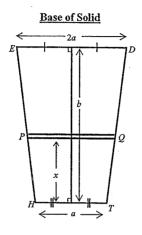
SECTION C continued

Question 7 (15 marks)

Marks

The diagram above shows a solid with a trapezoidal base EDTH of length b metres.


The front end HTSR is a square with side length a metres. The back is the pentagon ABCDE which consists of the rectangle ACDE with length 2a metres and width a metres, surmounted by the equilateral triangle ABC.


Consider a slice of the solid, parallel to the front and the back, with face formed by both the trapezium KLMN and the rectangle KNQP, which has thickness Δx and is at a distance x metres from HT.

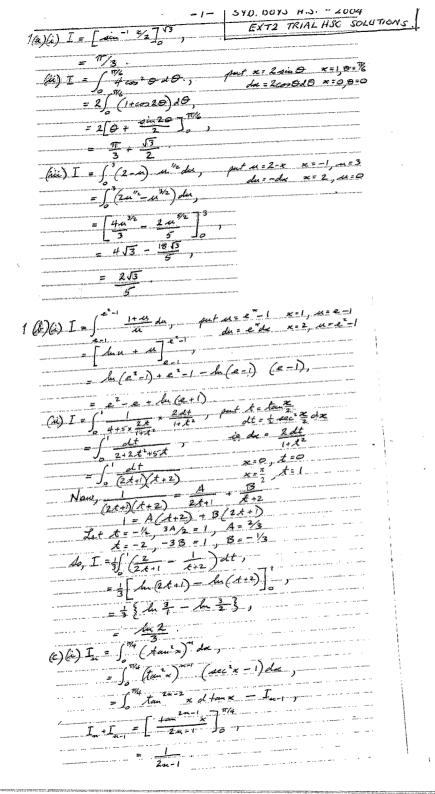
Question 7 continued

Marks

(i) Show that the height, BW, of the equilateral triangle ABC is $\sqrt{3}a$ metres.

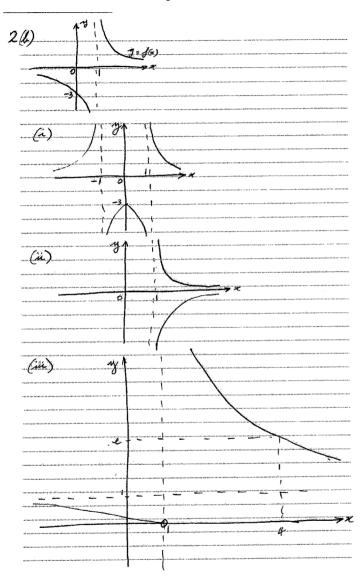
- (ii) Given that the perpendicular height of the trapezium KLMN is h metres ie VU = h, use the similar triangles BWF and VUF, in the Top View, to find h in terms of a, b and x.
- (iii) Given that the triangles *BLM* and *BRS* are similar, show that $LM = \frac{a(b-x)}{b}$
- (iv) Using the cross section of the base, find the length of PQ in terms of a, b and x.
- (v) Find the volume of the solid.

Question 8 starts on page 10


3

3

SECTION C continued


Question 8 (15 marks)			
(a)		If $a > 0$, $b > 0$ and $a + b = t$ show that $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{t}$	3
(b)		There are $n (n > 1)$ different boxes each of which can hold up to $n+2$ books. Find the probability that:	
	(i)	No box is empty when n different books are put into the boxes at random.	1
	(ii)	Exactly one box is empty when n different books are put into the boxes at random.	2
	(iii)	No box is empty when $n+1$ different books are put into the boxes at random.	2
	(iv)	No box is empty when $n+2$ different books are put into the boxes at random.	2
(c)		PQRS is a cyclic quadrilateral such that the sides PQ, QR, RS and SP touch a circle at A, B, C and D respectively.	
		Prove that:	
	(i)	AC is perpendicular to BD .	2
	(ii)	Let the midpoints of AB , BC , CD and DA be E , F , G and H respectively. Show that E , F , G and H lie on a circle.	3

End of paper


```
(ii) I3 = $ - I2, T4 tan 2 da
          = 3 - 1 Gec x - 1) dx
  (ii) & From the graph -1 < x < 3

(p) If x < 0, y = -2x = -2 + 6 = 3
```


36)(2) 3 = 11+3,	
+ -1/13	
(ii) $ag = \frac{1}{3} = \frac{1}{3} = \frac{2\pi}{3}$	
3	
(ii) 1 = 2 cis 2 T/2	
$\frac{2^{6} + \omega^{3}}{3^{6} + \omega^{3}} = \frac{2^{6} + \omega \cdot \left(6 \times \frac{21}{3} - 3 \times \frac{1}{6}\right)}{8 + \omega \cdot \left(7 \times 2\right)} = \frac{8 + \omega \cdot \left(7 \times 2\right)}{8 + \omega \cdot \left(7 \times 2\right)} = \frac{8 + \omega \cdot \left(7 \times 2\right)}{8 + \omega \cdot \left(7 \times 2\right)}$	
(ir) $\frac{16}{2} \pm \omega^{2} = \frac{1}{2} \pm \frac{163}{6} = \frac{163}{3} = \frac{163}{6} = \frac{163}{3} = 16$	
8 es (+1/2) or 8 es (+1/2)	
31	
(1)(a) 5-12 = a + 2are = th	
	.,
4-1-6	
$2a^2 = 18$	
a = ±3	
$\lambda = \pm 2$	
$\frac{4}{\sqrt{5}} = \pm (3-2i)$	
	basses
$ \frac{3(6)(4)}{3^{2}} = \frac{3^{2} - (3 - 2i)^{2}}{(3 + 3 - 2i)(3 - 3 + 2i)} = \frac{3^{2} - (3 - 2i)^{2}}{(3 + 3 - 2i)(3 - 3 + 2i)} = \frac{3^{2} - (3 - 2i)^{2}}{(3 + 3 - 2i)(3 - 3 + 2i)} = \frac{3^{2} - (3 - 2i)^{2}}{(3 + 3 - 2i)(3 - 3 + 2i)} $	V.
13-21/3	
3+3-22-13-3+2-1	
So bours of 3 is a circle course (-3,2), radius.	(-)
and the second s	
(c)(i) - 13 + 3 + 3 + 3 + 3 + 5 for a -hombus	
The state of the s	
2 1 3 = reis b	. :
2 - 1	1
r=1 (taking the root)	¦
7=1 (faking +ve root)	
(ii) # 13 = 13	
9 ± 1/2 = -0 + nt 20 = ± 7/2 + nT	*****
20 = ± 7/2 + mT D = ± 7/2 + mT D = ± 7/2 + ± 3 17/4 : Condition we 3 = ± 7/4, ± 37/4 ang 3 = ± 7/4, ± 37/4	
0.7.7.121	
2 = ± 1/4 ± 37/4	
a)(i) Let 3 = x + ing	
$\sqrt{x^2+(y-1)^2} = xy$	•
\[\frac{1}{2} \fr	
x==23==================================	
40	
management the management and an arrangement of the same and a same and a same an analysis of the same and a s	
the state of the s	
and the same of th	
a committee on the first of the committee of the committe	

```
(ii) y = \frac{z^2+1}{2}, parabola

y = mx, tangent

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

\frac{z^2-2mx+1=0}{2}

Section B

Section B

Ouestien 4

(a) p(3-i) = (3-i)^3 - 4(3-i)^2 - 2(3-i) + m = 0
```

(a)
$$f(3-i) = (3-i)^3 - 4(3-i)^2 - 2(3-i) + m = 0$$

= 18-26i - 32+24i - 6+2i + m = 0

$$\implies (m-20) + i(0) = 0$$
.'. $m=20$

(b) Required equation is $P(fz) = (fx)^3 + p \int x + q = 0$ is $x(x + p \int x)^2 = -q$ $\Rightarrow \left[x(x + p \int x)^2\right]^2 = \left[-q\right]^2$ $\Rightarrow c^3 + 2px^2 + p^2x - q^2 = 0$

(a) for in a roof $\Rightarrow \otimes(x) - \alpha = 0$ $u \otimes (\alpha) = \alpha$ Now $\otimes [\otimes(\alpha)] - \alpha = \otimes[\alpha] - \alpha$ $u \otimes (\alpha) = \alpha$

(d) (i) let x = cood = cos50 = 16x5 - 20x3 + 5x =0

Now coo.50 = 0 ⇒ 50 = 2kπ ± Ψ θ = 2kπ ± Ψ

Lating $\theta = \frac{2 \, \text{kT}}{5} + \frac{17}{10}$ when k = 0, $\theta = \frac{17}{10}$ k = 1, $\theta = \frac{3}{10}$ k = -1, $\theta = -\frac{3}{10}$ k = 2, $\theta = \frac{9}{10}$

Now roots of $16x^5 + 20x^3 + 5x = 0$ ore of the form $x = con\theta$ is $x = con \frac{\pi}{10}$, $con \left(-\frac{3\pi}{10}\right)$

=) Pacts one Cost, cost,

(ii) 16x = 20x+5=0 hos roots

X= w = 10, cos = 5 probe

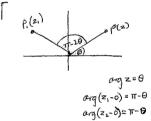
| Since con = 5 probe
| Since con = 5 probe
| Since con = 5 probe
| Roons

Question 5

(a) $z^{n} = cos(n\theta) + i sin(n\theta) - (A)$ $z^{n} = cos(-n\theta) + i sin(-n\theta)$ $z^{n} = cos(n\theta) - i sin(n\theta) - (B)$

(i) z"+z"= 2cos no (A)+(B)

(a) zn-z-n= 2isinno (4)-(B)


(b)(i) $\left[z^{2} - 2as \ker \left[\left[z - on \left(\frac{8 - k}{4} \right) \pi \right] \right] \right]$ $= 2^{2} - \left[\cos \ker \left[+ as(-\log) \right] z + \left[\cos \ker \left[- as(-\log) \right] \right]$ $= 2^{2} - 2\cos \ker \left[z + as(-\log) \right]$ $= z^{2} - 2\cos \ker \left[z + as(-\log) \right]$ $= z^{2} - 2\cos \ker \left[z + as(-\log) \right]$

(4) let | k=1 sin (1) ⇒ LHS = z¹-2zwo# +1 = z¹-2x+1

(p) bet k=3 in (0) => DHS = $z^2 - \lambda z \cos 3 \frac{\pi}{4} + 1$ = $z^2 + \frac{\lambda}{2} z + 1$

(c) Since non-real zeros recev in enjugate pause \Rightarrow quadratic factors $z^{2}+1=[z-\omega\frac{\pi}{4}][z-\omega\frac{\pi}{4}][z-\omega\frac{\pi}{4}][z-\omega\frac{\pi}{4}][z-\omega\frac{\pi}{4}]$ $=[z^{2}-\frac{3}{4}z+1][z^{2}+\frac{3}{4}z+1]$ Using b(ii) $=[z^{2}-(3z+1)][z^{2}+(2z+1)]$

(d) $z^{2} + z^{2} = 2\cos 2\theta$ $\frac{z^{4} + 1}{z^{2}} = 2\cos 2\theta$ $z^{4} + 1 = 2z^{2}\cos 2\theta$ $[z + 2(z + 1)][z - 2(z + 1)] = 2z^{2}\cos 2\theta$ $[(z + \frac{1}{2}) + f_{2}][(z + \frac{1}{2}) - f_{1}] = 2\cos 2\theta$ $[2\cos \theta + f_{2}][2\cos \theta - f_{2}] = 2\cos 2\theta$ $[2\cos^{2} \theta - 1] = \cos 2\theta$ $[2\cos^{2} \theta - 1] = \cos 2\theta$ (i) the arg $z = \theta$ ii arg $z_1 = \pi - \theta$ then $z_1 \ge \arg\left(-\frac{3}{2}\right) = \arg\left(-2\right) - \arg(2)$ $\Rightarrow \arg z_1 = \pi - \theta$ arg $z_1 = \arg z_2 = \pi - \theta$ Since $|z_1| \neq |z_1|$ then 0, p, p, collinear $[z_1 = |z_1| \arg(r - \theta); z_2 = |z_1| \arg(r - \theta)]$ (ii) $OP_1 = \sqrt{\exp^2 + (y_1)^2} = \sqrt{x^2 + y^2}$ $OP_2 = \sqrt{\frac{-2x}{x^2 + y^2}} + \sqrt{\frac{2y}{x^2 + y^2}} = \frac{2}{\sqrt{x^2 + y^2}}$ $\Rightarrow OP_1 \times OP_2 = \sqrt{x^2 + y^2} \times \frac{2}{\sqrt{x^2 + y^2}} = 2$

Q6

(a) With $R \propto v$, to make the algebra easier take R = mkv

(i)
$$m\frac{dv}{dt} = -(mg + mkv)$$

$$\frac{dv}{dt} = -(g + kv) \Rightarrow \frac{dt}{dv} = -\frac{1}{g + kv} = -\frac{1}{k} \left(\frac{k}{g + kv}\right)$$

$$\therefore t = -\frac{1}{k} \ln|g + kv| + c_1$$

$$(t = 0, v = u)$$

$$c_1 = \frac{1}{k} \ln|g + ku| \Rightarrow t = -\frac{1}{k} \ln\left|\frac{g + kv}{g + ku}\right|$$

$$\therefore \frac{g + kv}{g + ku} = e^{-kt}$$

$$\therefore g + kv = (g + ku)e^{-kt} \Rightarrow v = \frac{1}{k} \left[(g + ku)e^{-kt} - g\right]$$

$$x = \int \frac{1}{k} \left[(g + ku)e^{-kt} - g\right] dt$$

$$= \frac{1}{k} \left[\frac{g + ku}{-k}e^{-kt} - gt\right] + c_2$$

$$(t = 0, x = 0)$$

$$\therefore c_2 = \frac{g + ku}{k^2}$$

$$x = \frac{1}{k} \left[-\frac{g + ku}{k}e^{-kt} - gt\right] + \frac{g + ku}{k^2}$$

$$= \frac{g + ku}{k^2} (1 - e^{-kt}) - \frac{gt}{k}$$

QED

(ii) The two particles meet when $x_1 = x_2$

[NB You are allowed to assume the formula for $x_2!$]

ie
$$\frac{g+ku}{k^2}(1-e^{-kt})-\frac{gt}{k}=h+\frac{g}{k^2}(1-e^{-kt})-\frac{gt}{k}$$

$$\therefore \frac{g}{k^2} (1 - e^{-kt}) + \frac{u}{k} (1 - e^{-kt}) - \frac{gt}{k} = h + \frac{g}{k^2} (1 - e^{-kt}) - \frac{gt}{k}$$

$$\therefore \frac{u}{h} \left(1 - e^{-kt} \right) = h$$

$$\therefore 1 - e^{-kt} = \frac{hk}{u} \Rightarrow e^{-kt} = 1 - \frac{hk}{u} = \frac{u - hk}{u}$$

$$\therefore -kt = \ln\left(\frac{u - hk}{u}\right) \Rightarrow kt = \ln\left(\frac{u}{u - hk}\right)$$

$$\therefore t = \frac{1}{k} \ln \left(\frac{u}{u - hk} \right)$$

(b) (i)
$$ma = mv \frac{dv}{dx} = -(P + Qv^2) \Rightarrow a = v \frac{dv}{dx} = -\frac{1}{m}(P + Qv^2)$$

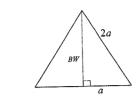
(ii) If
$$P = 0$$
 then $\frac{dv}{dx} = -\frac{Q}{m}v \Rightarrow \frac{dx}{dv} = -\frac{m}{Qv}$

If we transform the problem so that we take the distance travelled being from x = 0 (when v = 3U/2) to x = D (when v = U) then

$$\int_0^D \frac{dx}{dv} dv = \int_0^D dx = -\frac{m}{Q} \int_{\frac{3U}{2}}^U \frac{dv}{v}$$

$$\therefore D = \left[-\frac{m}{Q} \ln |v| \right]_{\frac{3U}{2}}^U = -\frac{m}{Q} \ln \left(\frac{U}{\frac{3U}{2}} \right) = -\frac{m}{Q} \ln \left(\frac{2}{3} \right) = \frac{m}{Q} \ln \left(\frac{3}{2} \right)$$

QED


(iii) If
$$P > 0$$
 then $\frac{dv}{dx} = -\left(\frac{P + Qv^2}{mv}\right) \Rightarrow \frac{dx}{dv} = -\frac{mv}{P + Qv^2}$

If we transform the problem so that we take the distance travelled being from x = 0 (when v = U) to x = D (when v = 0) then

being from
$$x = 0$$
 (when $v = U$) to $x = D$ (when $v = U$) to $x = D$ (when $v = U$) to $x = D$ (when $v = U$) to $x = D$ (when $v = U$) to $x = D$ (when $v = U$) to $x = D$ (when $v = U$) $dx = D$ (when $v = U$) $dx = D$ (when $v = U$) $dx = D$ (and $dx = D$) $dx = D$ (and $dx = D$) $dx = D$ (by $dx = D$) $dx = D$ (where $dx = D$) $dx = D$ (where $dx = D$) $dx = D$ (where $dx = D$) and $dx = D$ (where $dx = D$) $dx = D$ (where

Q7

(i)

By Pythagoras' Theorem $4a^2 = BW^2 + a^2$ $\therefore BW^2 = 3a^2$

$$\therefore BW = \sqrt{3}a$$

(ii) Since
$$\triangle BWF \parallel \triangle VUF$$

$$\therefore \frac{VU}{BW} = \frac{UF}{FW} \Rightarrow \frac{h}{\sqrt{3}a} = \frac{x}{b}$$

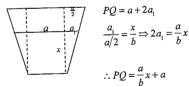
$$\therefore h = \frac{ax\sqrt{3}}{h}$$

(iii) Since
$$\triangle BWF \parallel \triangle VUF$$
 then $\frac{VF}{BF} = \frac{VU}{BW} = \frac{h}{\sqrt{3}a}$

$$BV = BF - VF$$

$$\triangle BLM \parallel \triangle RFS \text{ then } \frac{BV}{BF} = \frac{LM}{RS} \Rightarrow \frac{BF - VF}{BF} = \frac{LM}{a}$$

$$\therefore 1 - \frac{VF}{BF} = \frac{LM}{a} \Rightarrow 1 - \frac{h}{\sqrt{3}a} = \frac{LM}{a}$$


$$\therefore 1 - \frac{ax\sqrt{3}}{\sqrt{3}a} = \frac{LM}{a} \Rightarrow \frac{LM}{a} = 1 - \frac{x}{b} = \frac{b - x}{b}$$

$$\therefore LM = \frac{a(b - x)}{b}$$
QED

(iv) Clearly when x = 0 then PQ = a and when x = b then PQ = 2a, so given the linear relationship of PQ in terms of x then

$$PQ - a = \frac{2a - a}{b}(x - 0) \Rightarrow PQ = \frac{a}{b}x + a$$

Alternative solution

Q8

(v) Area of slice is area of trapezium KLMN and rectangle KNQP

$$KLMN = \frac{1}{2} \times \frac{ax\sqrt{3}}{b} \times \left[\frac{a(b-x)}{b} + \frac{a}{b}x + a \right]$$

$$= \frac{a^2x\sqrt{3}}{b}$$

$$KNQP = a \times \left(\frac{a}{b}x + a \right) = a^2 \left(\frac{x}{b} + 1 \right)$$
So cross sectional area is given by
$$\frac{a^2x\sqrt{3}}{b} + a^2 \left(\frac{x}{b} + 1 \right)$$

$$= \frac{a^2x\sqrt{3}}{b} + a^2 \left(\frac{x+b}{b} \right)$$

$$= \frac{a^2 \left[x\left(1 + \sqrt{3}\right) + b \right]}{b}$$

$$= \frac{a^2 \left[x\left(1 + \sqrt{3}\right) + b \right]}{b}$$

So the cross sectional volume is $\frac{a^2}{b} \left[x \left(1 + \sqrt{3} \right) + b \right] \Delta x$

So the volume, V, is given by $\int_0^b \frac{a^2}{b} \left[x \left(1 + \sqrt{3} \right) + b \right] dx$

$$V = \frac{a^2}{b} \int_0^b \left[x \left(1 + \sqrt{3} \right) + b \right] dx$$

$$= \frac{a^2}{b} \left[\left(1 + \sqrt{3} \right) \frac{x^2}{2} + bx \right]_0^b$$

$$= \frac{a^2}{b} \left[\left(1 + \sqrt{3} \right) \frac{b^2}{2} + b^2 \right]$$

$$= \frac{a^2b}{2} \left(3 + \sqrt{3} \right)$$

[NB This is not a solid formed by rotation, so π shouldn't appear in the answer!]

(a) $\frac{1}{a} + \frac{1}{b} - \frac{4}{t} = \frac{1}{a} + \frac{1}{b} - \frac{4}{a+b}$ $= \frac{b(a+b) + a(a+b) - 4ab}{ab(a+b)}$ $= \frac{a^2 - 2ab + b^2}{ab(a+b)}$ $= \frac{(a-b)^2}{ab(a+b)}$ ≥ 0 $\therefore \frac{1}{a} + \frac{1}{b} \geq \frac{4}{t}$ $\frac{1}{a} + \frac{1}{b} \geq \frac{4}{t}$

Method 3 (reductio ad absurdum)

Assume
$$\frac{1}{a} + \frac{1}{b} < \frac{4}{t}$$

$$\therefore \frac{a+b}{ab} < \frac{4}{t}$$

$$\therefore (a+b)^2 < 4ab \qquad (\because t = a+b)$$

$$\therefore (a+b)^2 - 4ab = (a-b)^2 < 0$$

This last statement is clearly a contradiction as $k^2 \ge 0, k \in \mathbb{R}$

So the original assumption was false

$$\therefore \frac{1}{a} + \frac{1}{b} < \frac{4}{t}$$

(b) (i) The total number of different outcomes:

The first book can go in any of n boxes, so there is a total of n^n different arrangements.

If there are to be no empty boxes, then the first book can go in any of n boxes, the next book only has n-1 boxes and so on. A total of n!

So the probability of no empty box is $\frac{n!}{n^n}$

(ii) For exactly one empty box, one box must have 2 books in it. So we have to pick the empty box, this can be done in n ways. Then we have to pick the box to have the two books, this can be in done in n-1 ways.

Then we have $\binom{n}{2}$ ways of picking the two books that will go in

the one box, leaving (n-2)! ways of arranging the other books.

A total of
$$n \times (n-1) \times \binom{n}{2} \times (n-2)! = \binom{n}{2} n!$$

So the probability is $\frac{\binom{n}{2} n!}{n^n}$ or $\frac{n(n-1)n!}{2n^n} = \frac{(n-1)n!}{2n^{n-1}}$

(iii) With n+1 books to be distributed, this can be done in n^{n+1} ways because the first book has n boxes, the second book has n boxes and so on until the $(n+1)^{n+1}$ book.

With no box to be empty, 1 box must have 2 books in it. We can choose this book in n ways. We can choose the 2 books in $\binom{n+1}{2}$ ways. The remaining books can be distributed in $\binom{n-1}{2}$ ways.

A total of
$$n \times \binom{n+1}{2} \times (n-1)! = \binom{n+1}{2} n!$$
 ways.

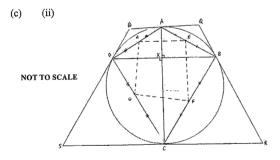
So the probability is
$$\frac{n! \binom{n+1}{2}}{n^{n+1}}$$
 or $\frac{n(n+1)!}{2n^{n+1}} = \frac{(n+1)!}{2n^n}$

 (iv) With n+2 books to be distributed over n boxes this can be done in nⁿ⁺² ways.

If no box is to be empty there are two cases:

Case 1: 1 box has 3 books in it; Case 2: 2 boxes have 2 books in it.

Case 1	Case 2			
Pick the box to have 3 books, this	Pick the 2 boxes to have the 2 books			
can be done in n ways.	$\binom{n}{n}$			
Pick the 3 books, this can be done	this can be done in $\binom{n}{2}$ ways. Pick			
in $\binom{n+2}{3}$ ways.	2 books to go into the first of these			
The remaining books can be	boxes ie $\binom{n+2}{2}$ ways, then two			
distributed in $(n-1)!$ ways.	books to go into the second box ie			
A total of $\binom{n+2}{3} \times n \times (n-1)!$	$\binom{n}{2}$ ways.			
ie $\frac{n(n+2)!}{n}$ ways	Then the remaining books to be			
o	distributed in $(n-2)!$ ways.			
:	A total of $\binom{n}{2}^2 \times \binom{n+2}{2} \times (n-2)!$ ie			
	$\frac{n(n-1)(n+2)!}{8}$ ways			
So a total number of $\frac{n(n+2)!}{n(n+2)!} + \frac{n(n-1)(n+2)!}{n(n-1)(n+2)!}$ ways ie				


 $\frac{4n(n+2)!+3n(n-1)(n+2)!}{24} = \frac{n(3n+1)(n+2)!}{24}$ ways

So the probability is
$$\frac{n(3n+1)(n+2)!}{24n^{n+2}} = \frac{(3n+1)(n+2)!}{24n^{n+1}}$$

(c) (i)

P
A
B
NOT TO SCALE

Let $\angle S = 2x$, then $\angle Q = 180 - 2x$ (*PQRS* is a cyclic quadrilateral) Also $\triangle SDC$ is isosceles, so $\angle SCD = 90 - x$. $\angle DBC = \angle SCD = 90 - x$ (alternate segment theorem) Similarly $\triangle SDC$ is isosceles, so $\angle QAB = x$. Similarly $\angle BCA = \angle QAB = x$ (alternate segment theorem) So $\angle CXB = 90^\circ$ (angle sum of triangle) $\therefore AC \perp BD$ **QED**

Lemma: The midpoints of a quadrilateral form a parallelogram

Proof: AH: HD = AE : EB = 1:1 $HE \parallel DB$ (Midpoint Theorem for Triangles) Similarly $GF \parallel DB \Rightarrow HE \parallel FG$ Similarly $HG \parallel AC \& AC \parallel EF \Rightarrow HG \parallel EF$. $\therefore EFGH$ is a parallelogram. **QED**

∴ $AC \perp BD$, $HE \parallel DB \& GF \parallel DB$ and $HG \parallel AC \& AC \parallel EF$ ∴ $\angle HGF = \angle GFE = \angle FEH = \angle EHG = 90^{\circ}$ ∴ E, F, G and H are concyclic (All rectangles are concyclic)

QED