

SYDNEY BOYS HIGH SCHOOL HOORE PARK, SURRY HILLS

2005
HIGHER SCHOOL CERTIFICATE
TRIAL PAPER

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 3 Hours
- Write using black or blue pen.
 Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 120

• Attempt questions 1 - 8

Examiner:

C.Kourtesis

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Section A (Start a new answer sheet.)

Question 1. (15 marks)

(a)	Eval	duate $\int_0^2 \frac{3}{4+r^2} dx.$	Marks 2
()		$\int_0^{\infty} 4 + x^2 dx^2$	
(b)	Find	$\int \cos x \sin^4 x \ dx \ . \qquad \qquad \tau_1 = 0$	1
(c)	Use	integration by parts to find	2
		$\int te^{-t}dt$.	
(d)	(i)	Find real numbers a and b such that	2
		$\frac{1}{x(\pi-2x)}=\frac{a}{x}+\frac{b}{\pi-2x}.$	
	(ii)	Hence find	2
		$\int \frac{dx}{x(\pi-2x)}.$	
(e)	Evalu	$\int_{-3}^{3} (2- x) dx.$	2
(f)	(i)	Use the substitution $x = a - t$ to prove that	2
		$\int_0^a f(x)dx = \int_0^a f(a-x)dx.$	
	(ii)	Hence evaluate	2
	A	$\int_0^{\frac{\pi}{2}} \log_e(\tan x) dx$	
		Jan In (tran) the Let us Inction)	V= X

Question 2. (15 marks)

- (a) If z=2+i and w=-1+2i find 2

 Im(z-w).

 (b) On an Argand diagram shade the region that is satisfied by both the 2
- (b) On an Argand diagram shade the region that is satisfied by both the conditions

$$\operatorname{Re}(z) \ge 2$$
 and $|z-1| \le 2$.

(c) If |z| = 2 and $\arg z = \theta$ determine

(i)
$$\left| \frac{i}{z^2} \right|$$
 (ii) $\arg \left(\frac{i}{z^2} \right)$

- (d) If for a complex number z it is given that $\overline{z} = z$ where $z \neq 0$, determine the locus of z.
- (e) A complex number z is such that $arg(z+2) = \frac{\pi}{6}$ and $arg(z-2) = \frac{2\pi}{3}$.

Find z, expressing your answer in the form a+ib where a and b are real.

(f) The complex numbers z_1 , z_2 and z_3 are represented in the complex plane by the points P, Q and R respectively. If the line segments PQ and PR have the same length and are perpendicular to one another, prove that:

$$2z_1^2 + z_2^2 + z_3^2 = 2z_1(z_2 + z_3)$$

Section B (Start a new answer sheet.)

Question 3. (15 marks)

(a)	If $2-3i$ is a zero of the polynomial $z^3 + pz + q$ where p and q are real, find the values of p and q .	Marks 3
(b)	If α , β and γ are roots of the equation $x^3 + 6x + 1 = 0$ find the polynomial equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$.	2
(c)	Consider the function $f(x) = 3\left(\frac{x+4}{x}\right)^2$.	
	(i) Show that the curve $y = f(x)$ has a minimum turning point at $x = -4$ and a point of inflexion at $x = -6$.	5
	(ii) Sketch the graph of $y = f(x)$ showing clearly the equations of any asymptotes.	2
(d) .	Use mathematical induction to prove that $n! > 2^n$ for $n > 3$ where n is an integer.	3

Question 4 (15 marks)

- If $f(x) = \sin x$ for $-\pi \le x \le \pi$ draw neat sketches, on separate diagrams, of:
 - (i) $y = [f(x)]^2$

2 2

3.

- (iii) $y^2 = f(x)$ 2
- (iv) $y = f(\sqrt{|x|})$ 2
- Show that the equation of the tangent to the curve $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$ at the point $P(x_0, y_0)$ on the curve is $xx_0^{-\frac{1}{2}} + yy_0^{-\frac{1}{2}} = a^{\frac{1}{2}}$.
- Consider the polynomial $P(x) = x^5 \alpha x + 1$. By considering turning points on the curve y = P(x), prove that P(x) = 0 has three distinct roots if

Section C (Start a new answer booklet)

Question 5 (15 marks)

(a)	A particle of mass m is thrown vertically upward from the origin with initial speed V_0 . The particle is subject to a resistance equal to mkv , where v is its
	speed and k is a positive constant.

Show that until the particle reaches its highest point the equation of motion is

$$\ddot{y} = -(kv + g)$$

where y is its height and g is the acceleration due to gravity.

Prove that the particle reaches its greatest height in time T given by

$$kT = \log_e \left[1 + \frac{kV_0}{g} \right].$$

(iv) If the highest point reached is at a height H above the ground prove

$$V_0 = Hk + gT$$
.

- If α and β are roots of the equation $z^2 2z + 2 = 0$
 - find α and β in mod-arg form.

3

Marks

(ii) show that
$$\alpha^n + \beta^n = \sqrt{2^{n+2}} \cdot \left[\cos \frac{n\pi}{4} \right]$$
.

Question 6 (15 marks)

- (a) A group of 20 people is to be seated at a long rectangular table, 10 on each side. There are 7 people who wish to sit on one side of the table and 6 people who wish to sit on the other side. How many seating arrangements are possible?
- (b) The area enclosed by the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the y axis through one complete revolution. Use the cylindrical shell method to find the volume of the solid that is generated.
- (c) The diagram shows a hemi-spherical bowl of radius r. The bowl has been tilted so that its axis is no longer vertical, but at an angle θ to the vertical. At this angle it can hold a volume V of water.

The vertical line from the centre O meets the surface of the water at W and meets the bottom of the bowl at B. Let P between W and B, and let h be the distance OP.

2

3

2

Page 8

(i) Explain why
$$V = \int_{r\sin\theta}^{r} \pi (r^2 - h^2) dh$$
.

(ii) Hence show
$$V = \frac{r^3\pi}{3} (2 - 3\sin\theta + \sin^3\theta)$$
.

- (d) (i) Show that $x^4 + y^4 \ge 2x^2y^2$.
 - (ii) If P(x, y) is any point on the curve $x^4 + y^4 = 1$ prove that $OP \le 2^{\frac{1}{4}}$, where O is the origin.

Section D (Start a new answer booklet)

Question 7 (15 marks)

- (a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?
- (b) (i) If $t = \tan \theta$, prove that

$$\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}$$
.

- ii) If $\tan \theta \tan 4\theta = 1$ deduce that $5t^4 10t^2 + 1 = 0$.
- (iii) Given that $\theta = \frac{\pi}{10}$ and $\theta = \frac{3\pi}{10}$ are roots of the equation . $\tan \theta \tan 4\theta = 1$, find the exact value of $\tan \frac{\pi}{10}$.

(c)

Two circles intersect at A and B. A line through A cuts the circles at M and N.

The tangents at M and N intersect at C.

- (i) Prove that $\angle CMA + \angle CNA = \angle MBN$.
- (ii) Prove M, C, N, B are concyclic.

2

2

2

Question 8 (15 marks)

(a)

The diagram above shows the graph of $y = \log_e x$ for $1 \le x \le n+1$.

(i) By considering the sum of the areas of inner and outer rectangles show that

$$\ln(n!) < \int_1^{n+1} \ln x \, dx < \ln((n+1))!$$

- \int (ii) Find $\int_{1}^{n+1} \ln x dx$.
- (iii) Hence prove that

$$e^n > \frac{(n+1)^n}{n!}$$

(b) If a root of the cubic equation $x^3 + bx^2 + cx + d = 0$ is equal to the reciprocal of another root, prove that

$$1+bd=c+d^2.$$

This question continues on the next page.

(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A:

- (i) $V = U \cot \alpha$
- (ii) $t = \frac{U}{g \sin \alpha}$.

This is the end of the paper.

6

6

S.B.H.S. - 2005 TRIAL HSC SOLUTIONS

Section A

(1) (i)
$$\int_{0}^{2} \frac{3}{4+x^{2}} dx = \frac{3}{2} \int_{0}^{2} \frac{3}{4+x^{2}} dx$$
$$= \frac{3}{2} \left[\tan^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$$
$$= \frac{3}{2} \left[\tan^{-1} \left(1 \right) - 0 \right]$$
$$= \frac{3\pi}{8}$$

(ii)
$$\int \cos x \sin^4 x dx = \int u^4 du \quad \left[u = \sin x \right]$$
$$= \frac{u^5}{5} + c$$
$$= \frac{\sin^5 x}{5} + c$$

(iii)
$$\int \underset{s \ f'}{\mathbf{t}} e^{-t} dt = fg - \int fg' dt$$
$$= -te^{-t} - \int (-e^{-t} \times 1) dt$$
$$= -te^{-t} + \int e^{-t} dt$$
$$= -te^{-t} - e^{-t} + c$$

(d) (i)
$$1 = a(\pi - 2x) + bx$$

 $x = 0 \Rightarrow a = \frac{1}{\pi}$
 $2a = b \text{ [coefficients of } x\text{]}$
 $\therefore b = \frac{2}{\pi}$
 $a = \frac{1}{\pi}, b = \frac{2}{\pi}$

(ii)
$$\int \frac{dx}{x(\pi - 2x)} = \frac{1}{\pi} \int \left(\frac{1}{x} - \frac{-2}{\pi - 2x}\right) dx$$
$$= \frac{1}{\pi} \ln x - \frac{1}{\pi} \ln (\pi - 2x) + c$$
$$= \frac{1}{\pi} \ln \left(\frac{x}{\pi - 2x}\right) + c$$

(e)
$$\int_{-3}^{3} (2-|x|) dx = 2 \int_{0}^{3} (2-|x|) dx$$

$$[Q 2-|x| \text{ is even}]$$

$$= 2 \int_{0}^{3} (2-x) dx$$

$$[Q 2-|x| = 2-x, x > 0]$$

$$= 2 \left[2x - \frac{1}{2}x^{2} \right]_{0}^{3}$$

$$= 2 \left[6 - \frac{9}{2} \right]$$

$$= 3$$

(f) (i)
$$x = a - t \Rightarrow dx = -dt$$

 $x = 0 \Rightarrow t = a$
 $x = a \Rightarrow t = 0$

$$\int_0^a f(x) dx = \int_a^0 f(a - t)(-dt)$$

$$= \int_0^a f(a - t) dt \qquad \left[Q \int_a^b f(x) dx = -\int_b^a f(x) dx\right]$$

$$= \int_0^a f(a - x) dx \qquad \left[Q \text{ choice of variable irrelevant}\right]$$

(ii)
$$I = \int_0^{\frac{\pi}{2}} \ln(\tan x) dx$$

$$= \int_0^{\frac{\pi}{2}} \ln\left(\tan\left(\frac{\pi}{2} - x\right)\right) dx$$

$$= \int_0^{\frac{\pi}{2}} \ln(\cot x) dx$$

$$2I = \int_0^{\frac{\pi}{2}} \ln(\tan x) dx + \int_0^{\frac{\pi}{2}} \ln(\cot x) dx$$

$$= \int_0^{\frac{\pi}{2}} \left[\ln(\tan x) + \ln(\cot x)\right] dx$$

$$= \int_0^{\frac{\pi}{2}} \ln 1 dx$$

$$= 0$$

$$\therefore 2I = 0$$

$$\therefore I = 0$$

$$\therefore \int_0^{\frac{\pi}{2}} \ln(\tan x) dx = 0$$

(2) (a)
$$z = 2 + i, w = -1 + 2i$$

 $\therefore z - w = 3 - i$
 $\therefore \operatorname{Im}(z - w) = -1$

(c) (i)
$$\left| \frac{i}{z^2} \right| = \frac{|i|}{|z|^2} = \frac{1}{4}$$
(ii)
$$\arg\left(\frac{i}{z^2}\right) = \arg i - \arg\left(z^2\right)$$

$$= \frac{\pi}{2} - 2\arg z$$

$$= \frac{\pi}{2} - 2\theta$$

(d)
$$z = \overline{z} \Rightarrow z$$
 is purely real
So the locus is $y = 0$, except $x = 0$.
Alternatively:
Let $z = x + iy$, $(z \neq 0)$
 $\therefore \overline{z} = x - iy$
 $\therefore z = \overline{z} \Rightarrow x + iy = x - iy$
 $\therefore 2iy = 0 \Rightarrow y = 0$
 $\therefore z$ is a purely real number excluding 0

(e) $\arg(z+2) = \frac{\pi}{6}$, $\arg(z-2) = \frac{2\pi}{3}$. z is represented by the point C, the intersection of the two rays.

Alternatively

Section B

(a) = ++++++== # (2-321) 18 a Zeto then (2-3/)3+(2-3/)p+9=0-(2-3/)=(2-3/)2(2-3/) = (5-12/)(2-32) -- -- +(2-3x) p +9, = 0. Equating real parts. -46 +2p+q=0 Equating Imaginary parts. - 9 -3p = 0 => 3p = -9 3- P = -3 - (2) Salvet @ into 1 pai have ·· 9 = 52 -[3]

Guest-war (3) (b) x3+6x+1=0 If x, p, & are the hosts XBY = -1 NOW, &B = XBY = -1 · Let y = - + = x= Le the polynomial equation (-1)3+6(-1)+1=0·1 -1-642+43=0 143-642-1=0 [27

(6) $y = 3(\frac{3u+4}{3c})^2$ $\frac{dy}{dx} = 6\left(\frac{x+4}{x}\right)\left(\frac{-4}{x}\right)$ = -24 (x+4) dy =0 ⇒ x=-4 Whan x=-4, y ((-4,0) is a stationary pt $\frac{d^{2}q}{dx^{2}} = -24 \int_{-\infty}^{\infty} \frac{x^{3} - (x+4)3x^{2}}{x^{3}}$ 48× (×+6) f'(x) = 0, $\Rightarrow x = -6$. When x = -6, $y = 3(\frac{4}{36})$ - 14(-6, +5) conta bis Hot of Inflaxion. Test > 16 -7 -6 -5 +

1 : (-40) is a min turning pt k to . y -axis is a vertical asymptote: 157 [2] Note : $x \xrightarrow{\downarrow_{MV}} \pm \infty \quad 3 \quad \left(\begin{array}{c} x^2 + 8x + 16 \\ x + 16 \end{array} \right) = 3$ lie Horgontal asymptotest yes,

1. (-6, 5) is a pt. of infloxion

Also, fil(-4) = +8 (2) >0

Ch) x = + + = = + / .. + x + + y - dy = 0. $\frac{dy}{dx}$ | $x = x_0 = -\sqrt{\frac{y_0}{x_0}}$ " xoty - xok yo = xo yot - xyot 一 物はヤナバナリーとかりましょきナなか (noyo) is on the curve 1 >> xot + yo = at and divide both sides of O by not yot we have 76 x + yo x = a =

i (&)
(b+0/4) ~ 7 = -19 = -
(Bmy-(B10) m) 7 =
of (pora) and in
- NA + NA) =
- / (B+ + 2) = 1
J. de = - Jartz der.
me (6+ v4) -= 20
(g+v4) -= = = (1)
range from from - from Dea)
chuesmons.
Section C

\$ P Stationary pts when β ((%) β ((%) β ((%) x=-(3) + [-(3) +]<0 K = (4) + K= (5) - a(5) + $\chi = \left(\frac{2}{5}\right)^{\frac{1}{4}}, \quad P^{II}\left[\left(\frac{2}{5}\right)^{\frac{1}{4}}\right] > 0$ For) = the opposite ye cutre the opposite sides of the n-axi
The product of the y's 20

1+ Mailant 77 5+w100 1)][神影為十] 1/3 2/2 curve cuts the x-axis in 一十(章)(李)= 一(章)(多)本] (0

(III)
$$\sqrt{\frac{dV}{dy}} = -\left(\frac{kV+g}{V}\right)$$
 $\frac{dV}{dy} = -\left(\frac{kV+g}{V}\right)$
 $\frac{dV}{dy} = -\frac{1}{kV+g}$
 $\frac{dV}{kV+g} = \frac{1}{kV}$
 $\frac{dV}{kV+g} = \frac{1}{kV}$

(b) (1)
$$3 = \frac{2 \pm \sqrt{4-8}}{2}$$

$$= \frac{2 \pm 2i}{2}$$

$$= 1 \pm i$$

$$= \sqrt{2} \text{ (is } \pm \frac{\pi}{4}$$

$$\therefore A, \beta \text{ Are } \sqrt{2} \text{ (is } \pm \frac{\pi}{4}) + (\sqrt{2} \text{ (is } \pm \frac{\pi}{4})$$

$$= (\sqrt{2})^m \left[\text{ (is } \frac{\pi}{4}) + \text{ (is } \frac{\pi}{4}) \right]$$

$$= (\sqrt{2})^m \left[\frac{2 \text{ (is } \frac{\pi}{4}) + \text{ (is } \frac{\pi}{4})}{3 + 3 = 2R_3} \right]$$

$$= \frac{2}{2} \frac{2}{4} \text{ (is } \frac{\pi}{4})$$

$$= \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{2}{4} \text{ (is } \frac{\pi}{4})$$

$$= \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{2}{4} \text{ (is } \frac{\pi}{4})$$

$$= \frac{2}{4} \frac{2}{4} \frac{2}{4} \frac{2}{4} \text{ (is } \frac{\pi}{4})$$

$$= \frac{2}{4} \frac{2}{4}$$

QUESTION 6.

$$V = \lim_{n \to \infty} \sum_{x=0}^{n} 2\pi x (x-n) \xi_{n}.$$

$$= 2\pi \int_{0}^{n} (x^{2n} - x^{3}) dx.$$

(11)
$$V = \pi \left[r^{2}k - \frac{1}{3} \right] rino$$

$$= \pi \left[r^{3} - \frac{1}{3} - r^{3} + r^{3} - \frac{1}{3} \right]$$

$$= \pi \left[\frac{2r^{3}}{3} - r^{3} + r^{3} + r^{3} \right]$$

$$= \frac{1}{3} \left[\frac{2r^{3}}{3} \left(2 - 3 \sin \alpha + \sin^{3} \alpha \right) \right]$$

(d) (n now (oct-yr) = 0. 24-22 yr + y + 0 .: /24+y + 3 22 yr!

(11) $now op = \sqrt{x^{2}ry^{2}}$ $\therefore op + = (x^{2}+y^{2})^{2}$ $= x^{4}+y^{4}+2x^{2}y^{2}$ $\leq x^{4}+y^{4}+2^{4}ry^{4} (pan + x^{4}+y^{4}+x^{4}ry^{4})$ $\leq 2. (x^{4}ry^{4}=1)$ $\therefore lop \leq 2^{\frac{4}{4}}$

Section D

7. (a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?

Solution:
$$\frac{5^4 \times 4^4 \times 3^4 \times 2^3 \times 1^4}{5!} = (5!)^3,$$

= 1728000.

(b) i. If $t = \tan \theta$, prove that

$$\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}$$

Solution: L.H.S.
$$= \frac{2 \times \tan 2\theta}{1 - (\tan 2\theta)^{2}},$$

$$= \frac{2 \times \frac{2\theta}{1 - e^{2}}}{1 - (\frac{2\theta}{1 - e^{2}})^{2}},$$

$$= \frac{4t(1 - t^{2})}{(1 - t^{2})^{2} - 4t^{2}},$$

$$= \frac{4t(1 - t^{2})}{1 - 6t^{2} + t^{4}},$$

$$= R.H.S.$$

ii. If $\tan \theta \tan 4\theta = 1$, deduce that $5t^4 - 10t^2 + 1 = 0$.

Solution:
$$t \times \frac{4t(1-t^2)}{1-6t^2+t^4} = 1$$
,
 $4t^2-4t^4 = 1-6t^2+t^4$,
 $5t^4-10t^2+1 = 0$.

iii. Given that $\theta = \frac{\pi}{10}$ and $\theta = \frac{3\pi}{10}$ are roots of the equation $\tan \theta \tan 4\theta = 1$, find the exact value of $\tan \frac{\pi}{40}$.

Solution: Using the quadratic formula,
$$t^2 = \frac{10 \pm \sqrt{100 - 26}}{10}$$
,
$$= \frac{5 \pm 2\sqrt{5}}{5}.$$

$$i.e., t = \sqrt{\frac{5 \pm \sqrt{5}}{5}} \text{ as } \tan\frac{\pi}{10}, \tan\frac{3\pi}{10} > 0.$$
Now, as $\tan\frac{\pi}{10} < \tan\frac{3\pi}{10}$, $\tan\frac{\pi}{10} = \sqrt{\frac{5 - \sqrt{5}}{5}}$.

Two circles intersect at A and B. A line through A cuts the circles at M and N. The tangents at M and N intersect at C.

i. Prove that $\angle CMA + \angle CNA = \angle MBN$.

Solution: Join AB. $\angle CMA = \angle MBA \text{ (angle in alternate segment)},$ $\angle CNA = \angle ABN \text{ (angle in alternate segment)},$ $\angle CMA + \angle CNA = \angle MBA + \angle ABN,$ $= \angle MBN.$

ii. Prove M, C, N, B are concyclic.

Solution: $\angle CMA + \angle CNA + \angle MCN = 180^{\circ}$ (angle sum of $\triangle CMN$), $\therefore \angle MBN + \angle MCN = 180^{\circ}$. So MCNB is a cyclic quadrilateral (opposite angles supplementary).

8. (a)

The diagram above shows the graph of $y = \log_e x$ for $1 \le x \le n + 1$.

i. By considering the sum of the areas of inner and outer rectangles, show that

$$\ln(n!) < \int_1^{n+1} \ln x \, dx < \ln((n+1)!)$$

Solution: Sum inner rectangles
$$= \sum_{x=1}^{n} \ln x \times 1,$$

$$= \ln 1 + \ln 2 + \ln 3 + \dots + \ln n,$$

$$= \ln n!$$
Sum outer rectangles
$$= \sum_{x=2}^{n+1} \ln x \times 1, \text{ or } \sum_{x=1}^{n} \ln(x+1) \times 1,$$

$$= \ln 2 + \ln 3 + \ln 4 + \dots + \ln(n+1),$$

$$= \ln(n+1)!$$

$$\therefore \ln n! < \int_{1}^{n+1} \ln x \, dx < \ln(n+1)!$$

ii. Find $\int_1^{n+1} \ln x \, dx$.

Solution:
$$\mathbf{I} = \int_{1}^{n+1} \ln x \times 1 \, dx$$
, $u = \ln x$ $v' = 1$
 $= [x \ln x]_{1}^{n+1} - \int_{1}^{n+1} dx$, $u' = \frac{1}{x}$ $v = x$
 $= (n+1) \ln(n+1) - 0 - [x]_{1}^{n+1}$,
 $= (n+1) \ln(n+1) - (n+1-1)$,
 $= (n+1) \ln(n+1) - n$.

iii. Hence prove that

$$e^n > \frac{(n+1)^n}{n!}$$

Solution: From i.,
$$\ln(n+1)! > \int_1^{n+1} \ln x \, dx$$
.

$$\therefore \ln(n+1)! > \ln(n+1)^{n+1} - n,$$

$$n > \ln \frac{(n+1)^{n+1}}{(n+1)!},$$

$$> \ln \frac{(n+1)^n}{n!}.$$

$$\therefore e^n > \frac{(n+1)^n}{n!}.$$

(b) If a root of the cubic equation $x^3 + bx^2 + cx + d = 0$ is equal to the reciprocal of another root, prove that

 $1 + bd = c + d^2.$

Solution: Let the roots be α , $\frac{1}{\alpha}$, β .

Method 1: $\alpha \times \frac{1}{\alpha} \times \beta = -d,$ $\beta = -d$

Substitute in the equation for the root β :

$$-d^{3} + bd^{2} - cd + d = 0,$$

$$cd + d^{3} = bd^{2} + d.$$
Divide by d $(d \neq 0)$,
$$c + d^{2} = bd + 1.$$
Method 2:
$$\alpha + \frac{1}{\alpha} + \beta = -b,$$

$$1 + \alpha\beta + \frac{\beta}{c} = c,$$

$$\beta = -d.$$

$$\therefore \alpha + \frac{1}{\alpha} - d = -b \dots \boxed{1}$$

$$1 - \alpha d - \frac{d}{\alpha} = c \dots \boxed{2}$$

$$1 - c = d(\alpha + \frac{1}{\alpha}),$$

$$\therefore \alpha + \frac{1}{\alpha} = \frac{1 - c}{d}.$$
Sub. in $\boxed{1}$, $\frac{1 - c}{d} - d = -b$,
$$1 - c - d^{2} = -bd,$$

$$i.e., 1 + bd = c + d^{2}.$$

(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A:

i. $V = U \cot \alpha$

$$\ddot{x} = 0$$
 $\ddot{y} = -g$
 $\dot{x} = U \cos \alpha$ $\dot{y} = U \sin \alpha - gt$
At A , $U \cos \alpha = V \sin \alpha$,
 $i.e., V = U \cot \alpha$

ii.
$$t = \frac{U}{g \sin \alpha}$$

$$\begin{array}{c} g \sin \alpha \\ \\ \text{Solution: At } A, \, y = -V \cos \alpha \text{ (now heading downwards),} \\ i.e., \quad -U \cot \alpha \times \cos \alpha = U \sin \alpha - gt, \\ gt = U \sin \alpha + U \frac{\cos \alpha}{\sin \alpha}, \cos \alpha, \\ = U \left(\frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha} \right). \\ \therefore \quad t = \frac{U}{g \sin \alpha}. \end{array}$$