

SYDNEY BOYS HIGH MOORE PARK, SURRY HILLS

2005 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 120 minutes Examiner: D.M.Hespe

Name: ___

Your Mathematics Class		
(Tick the box)		
10MaA	Mr Choy	
10MaB	Ms Kourtesis	
10MaC	Ms Ward	
10 MaD	Mr Gainford	
10MaE	Mr Parker	
10MaF	Mr Boros	

Markers' V	Jse Only
Question 1	/20
Question 2	/20
Question 3	/15
Question 4	/15
Question 5	/15
Question 6	/15
Total	/100

Page 1 of 14

	f-western.
	1
	1
	1
 	1
	1
	1
	1
· .	1
	1
	1

.../exams/2005/Year10/Yearly05.tex

(k)	Evaluate $\sqrt{17^2 - 15^2}$.	
(1)	Write $2^3 \times 2^6$ in simplest index notation.	
m)	A farm gate is 2 m high and 3 m wide. Find the exact length of the diagonal strut.	
(n)	Simplify $(x^2y)^3 \div (x^3y)^2$.	
(o)	Express $\frac{4}{\sqrt{8}}$ with a rational denominator.	
(p)	Find the area of the sector in terms of π .	
(q)	Solve $2 - x = -5$.	
(r)	If $v^2 = u^2 + 2aS$, find v when $u = 2$, $a = 10$, and $S = 3$.	
(s)	102° Find x .	
(t)	My Edvest account pays 6% p.a. simple interest. If I invest \$1200 for two years, what will my investment be worth?	

	Fully factorise the following:	
	(i) $t^2 - 10t + 16$	
	(ii) $4x^2-4$	
b)	Find the smallest part when \$19 is divided in the ratio $2:3:5$.	
c)	With the aid of a diagram, explain what is wrong with the following proof: In \triangle s ABC , PQR , $\angle ABC = \angle QRP = 65^{\circ}$, $\angle BCA = \angle QPR = 35^{\circ}$, $BC = QP = 15 \text{ cm}$. $\therefore \triangle ABC \equiv \triangle PQR \text{ (AAS)}$.	
d)	Given the points $A(3, 6)$ and $B(-3, -2)$, write down the (i) midpoint of AB ,	
d)		

Answers

Question 2 (20 marks)

(e) Find x if $5\sqrt{7} - \sqrt{x} = 0$	(e)	Find	x	if	$5\sqrt{7}$	$-\sqrt{x} =$	0
--	-----	------	---	----	-------------	---------------	---

(f)

21/9/2005

2

2

1

Question 3 (15 marks)

(a) Evaluate the pronumerals to the nearest whole number or whole degree, as appropriate. (i) $b = \frac{33 \cdot 8 \sin 117^{\circ}}{\sin 38^{\circ}}$

(i)
$$b = \frac{33.8 \sin 117^{\circ}}{\sin 38^{\circ}}$$

1

1

(ii)
$$c^2 = 36^2 + 23^2 - 2 \times 36 \times 23\cos 28^\circ$$

(b) Find the volume and total surface area of a solid cone of radius $5\,\mathrm{cm}$ and slant height $13\,\mathrm{cm}$.

4

(g) Solve simultaneously, the system of equations 3

$$4x - 5y = 2$$
$$3x - 2y = -2$$

(ii) Write an equation connecting z and y.

(i) Find the value of x, giving reasons.

$$3x - 2y = -1$$

(i)
$$\cos \vartheta = \frac{1}{\sqrt{2}}$$
.

1

(ii)
$$\tan \vartheta = -\sqrt{3}$$
.

1

(d) Three coins are tossed simultaneously.

(i) Use a tree diagram to write out the sample space.

3

Find the probability of obtaining

(ii) three heads,

1

(iii) at least one head,

1

(iv) at most one head.

1

Question 4 (15 marks)

Answers

(a) Find (to the nearest dollar) the compound interest earned if \$96 000 is invested for 5 years at 6.5% p.a.

2

(b) Sketch $y=x^2-2x$ on the grid below, showing clearly any intercepts and maximum or minimum points.

3

3

(c) Solve $x^2 = 3x + 7$ by the method of completing the square. Give your answer as a surd in simplest form and as a decimal approximation correct to 2 decimal places.

The p	robability t	hat a certa	in event wil	l happen
$\frac{1}{x}$ that t	Which of the event w	he followin ill not happ	g is the propen?	obability
$\frac{x}{1}$,	$\frac{1-x}{x}$,	$\frac{x+1}{x}$,	$\frac{x-1}{x}$,	$\frac{x}{x-1}$
Prove	that equal	chords sub	tend equal a	angles at
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		
the ce	ntre of a ci	rcle.		

(f)	When blowing up a balloon, the first hearty
	breath gives a diameter of 7 cm. By the time
	it is fully blown up, its diameter is 21 cm.
	Find in simplest form:

- (i) the ratio of these diameters,
- (ii) the ratio of the respective surface areas,
- (iii) the ratio of the respective volumes.

the probability		
$\frac{-1}{x}$, $\frac{x}{x-1}$		
equal angles at		3
he first hearty a. By the time is 21 cm.		
,		1
urface areas,		1
olumes.	·	1

1

1	^\	
3,42	NOT TO SCALE	
<i>]</i> //	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
13	<u></u>	
i) Calculate t	he size of the smallest angle in this	
rusugie coi	rrect to the nearest minute.	
i) Hence find	its area to the nearest square metre.	

Question 6 (15 marks)	Answers
(a) 5 A 4 X	$AX = 4,$ $AY = 5,$ $YC = 1,$ $\angle AXY = \angle ACB.$
Calculate, giving reasons, the val	
lowing ratios: (i) $XY : CB$	[8]
-	
(ii) Area $\triangle AXY$: area $\triangle ACI$	3
(iii) Area $\triangle AXY$: area $\triangle AX$	C [2

- (i) show that $x = \frac{ab}{a+b}$.
- (ii) Hence prove that $\sqrt{\frac{a-x}{b-x}} = \frac{a}{b}$ where a, b are positive.

2

(c)

ACB is a straight line.

TA and TB are tangents to the circles.

Prove that TADB is a cyclic quadrilateral.

Year 10

Yearly Examination 2005

Advanced Mathematics Sample Solutions

Question	Marker
A	RB
В	PSP
C	AMG
D	AW
E	CK
F	EC

uesti	on 1 (20 marks) Answers	Marks
(a)	Express $\frac{2}{15}$ as a recurring decimal.	1
(b)	Write $\frac{3}{8} + \frac{5}{6}$ as a single fraction. $\left \frac{5}{24} \right = \frac{29}{24}$	1
(c)	What is the value of $0.04 \times (0.3)^2$?	1
(d)	Find 19% of \$38 000 000. \$7 220 000	1
(e)	Simplify $-6p + 2q + p - 5q$. $-5p - 32$	1
(f)	Factorise $5-10y$. $5(1-2y)$	1
(g)	Write as an algebraic expression: $(x+y)$, $(x+y)$, $(x+y)$, $(x+y)$.	1
(h)	Find correct to two decimal places $\frac{5 \cdot 28}{57 \cdot 3 \times 13}$.	1
	Write down the value of sin 34°15′ (correct to 3 0, 563 significant figures).	1
(j)	Convert S15°E to a True bearing.	1

.../exams/2005/Year10/Yearly05.tex

Question 2 (20 marks) Answers (a) Fully factorise the following: (i) $t^2 - 10t + 16$ 1 (t-2)(t-8)2 = 4 (1-1)(1+1) (b) Find the smallest part when \$19 is divided in 2 the ratio 2:3:5. \$ 3.80 (c) With the aid of a diagram, explain what is A 4 wrong with the following proof: In \triangle s ABC, PQR, $\angle ABC = \angle QRP = 65^{\circ}$ $\angle BCA = \angle QPR = 35^{\circ}$ $BC = QP = 15 \,\mathrm{cm}$. $\therefore \triangle ABC \equiv \triangle PQR \text{ (AAS)}.$ BC and aP are not corresponding side (d) Given the points A(3, 6) and B(-3, -2), write down the (i) midpoint of AB, $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(0,2\right)$ (ii) length of the interval AB, $\phi = \sqrt{(\chi_1 - \chi_1)^2 + (y_2 - y_1)^2}$ 1 (iii) gradient of the line AB.

.../exams/2005/Year10/Yearly05.tex

(e) Find
$$x$$
 if $5\sqrt{7} - \sqrt{x} = 0$.

$$\sqrt{x} = 5\sqrt{7} = \sqrt{25} \times \sqrt{7}$$
= $\sqrt{175}$
='\times x = 175

(f)

(i) Find the value of x, giving reasons.

(ii) Write an equation connecting z and y.

(g) Solve simultaneously, the system of equations

.../exams/2005/Year10/Yéarly05.tex

$$|x=-2, y=-2|$$

2

2

1

3

Question 3 (15 marks)

Answers

(a) Evaluate the pronumerals to the nearest whole number or whole degree, as appropriate.

(i)
$$b = \frac{33.8 \sin 117^{\circ}}{\sin 38^{\circ}}$$

1

1

1

(ii)
$$c^2 = 36^2 + 23^2 - 2 \times 36 \times 23 \cos 28^\circ$$

(iii)
$$\sin A = \frac{407 \sin 71^{\circ}}{586}$$

(b) Find the volume and total surface area of a solid cone of radius 5 cm and slant height 13 cm.

$$\sqrt{\frac{1}{3}\pi r^{2}h}$$
= $\frac{1}{3}\pi(25)x12$
= 100 π cm³

.../exams/2005/Year10/Yearly05.tex

(i) $\cos \vartheta = \frac{1}{\sqrt{2}}$.

1

3

1

1

1

(ii)
$$\tan \theta = -\sqrt{3}$$
. $\theta = 120^{\circ}$, 300°

(d) Three coins are tossed simultaneously.

(i) Use a tree diagram to write out the sample 15+

Find the probability of obtaining

(ii) three heads,

(iii) at least one head,

(iv) at most one head. p(at most 1 H)= p(777)+p(14)

$$p(at most 1H) = p(777) + p(14)$$
= $\frac{1}{2} + \frac{3}{2} = \frac{1}{2}$

Question 4 (15 marks)

Answers

(a) Find (to the nearest dollar) the compound interest earned if \$96 000 is invested for 5 years at 6.5% p.a.

n=5. r=0.065. p=96000 A=96000 (1+0.065)5-96000 (1)8131. =\$35,528

(b) Sketch $y = x^2 - 2x$ on the grid below, showing clearly any intercepts and maximum or minimum points.

3

.: y=-1.

x=0 y=0. y=0 x=2.

2

2= no labels. 2½ labels but careless

x=0 y=0 y=0 $0=x^2-2x$ 0=(x)(x-2) x=0 x=2.

(c) Solve $x^2 = 3x + 7$ by the method of completing the square. Give your answer as a surd in simplest form and as a decimal approximation correct to 2 decimal places.

22 for no decimal X = 3± \(\sigma\) x = 4.54 or2 for only I value.

.../exams/2005/Year10/Yearly05.tex

$$\Rightarrow BS = 35 \sin 35^{\circ} = 20.78$$

$$\sin 75^{\circ}$$

(e)

(i) Calculate the size of the smallest angle in this triangle correct to the nearest minute.

Smallest augle is apposite the shortest side. (. . 0)

$$\cos \theta = 12^{2} + 13^{2} - 8.5^{2}$$
 $2.12.13$

(ii) Hence find its area to the nearest square metro-

1.12.13. sin 39 30

.../exams/2005/Year10/Yearly05.tex

Question 6 (15 marks)

Answers

Calculate, giving reasons, the value of the following ratios:

(i) *XY* : *CB* BAXY 111 A ACB

Conesponding Sides

(ii) Area $\triangle AXY$: area $\triangle ACB$ A1: A2 = 212: 22

(iii) Area $\triangle AXY$: area $\triangle AXC$

3

2

