

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Nomo:

	Mathematics Clar Fick the box)	SS
10MaA	Mr Fuller	$\overline{\Box}$
10MaB	Ms Ward	
10MaC	Mr Boros	
10 MaD	Ms Evans	
10MaE	Mr McQuillan	
10MaF	Mr Gainford	`

Marker	Use	Only
--------	-----	------

Section	Mark
A	/20

(a) Simplify: (i) $3k + 2 + k$ (ii) $\frac{3a}{8} + \frac{a}{4}$ (b) Find 8% of \$2 700. (c) Simplify: (i) $\frac{\sqrt{130}}{\sqrt{5}}$ (ii) $\frac{4 + 8m}{4}$ (d) Factorise $ab + 2a^2$. (e) Solve $4t - 1 = \frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$ (h) Solve simultaneously	Marks	Answers	tion 1	iestic
(ii) $\frac{3a}{8} + \frac{a}{4}$ (b) Find 8% of \$2700. (c) Simplify: (i) $\frac{\sqrt{130}}{\sqrt{5}}$ (ii) $\frac{4+8m}{4}$ (d) Factorise $ab+2a^2$. (e) Solve $4t-1=\frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2\cdot 5\times 6\cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$				(a)
(b) Find 8% of \$2700. (c) Simplify: (i) $\frac{\sqrt{130}}{\sqrt{5}}$ (ii) $\frac{4+8m}{4}$ (d) Factorise $ab+2a^2$. (e) Solve $4t-1=\frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2\cdot 5\times 6\cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$	1		(i)	
(c) Simplify: (i) $\frac{\sqrt{130}}{\sqrt{5}}$ (ii) $\frac{4+8m}{4}$ (d) Factorise $ab + 2a^2$. (e) Solve $4t - 1 = \frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$			(ii)	
(i) $\frac{\sqrt{130}}{\sqrt{5}}$ (ii) $\frac{4+8m}{4}$ (d) Factorise $ab + 2a^2$. (e) Solve $4t - 1 = \frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$			b) Find	(b)
(ii) $\frac{4+8m}{4}$ (d) Factorise $ab+2a^2$. (e) Solve $4t-1=\frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2\cdot 5\times 6\cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$				(c)
(d) Factorise $ab + 2a^2$. (e) Solve $4t - 1 = \frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$	[1			
(e) Solve $4t - 1 = \frac{1}{2}$. (f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$			(ii)	
(f) Evaluate $\frac{\sqrt{22500}}{2 \cdot 5 \times 6 \cdot 4}$. (g) Simplify $\frac{(a^4)^4}{a^2}$	[]		d) Fact	(d)
(g) Simplify $\frac{(a^4)^4}{a^2}$	[]		e) Solv	(e)
	1	·	f) Eva	(f)
(h) Solve simultaneously			g) Sim	(g)
			h) Solv	(h)
$y=2 ext{and} \ y+6=2x$				

Page 2 of 24

.../exams/2006/Year10/Yearly06.tex

) (i) So	Folia $-2x + 1 > 5$.	
(ii) G	Sraph the solution set on a number-line.	
	th the graphs of: $=x^2+1$ $=\frac{4}{x}$ $=\frac{4}{x}$ $\frac{4}{x}$ $\frac{2}{x}$ $\frac{6}{x}$	
l) Evalua	ate $10-2x^2$ when $x=-1$.	
	ate $10 - 2x^2$ when $x = -1$. ss $x\%$ of m in cents.	

End of Section A

(o) If $\sin \theta = 0.147$ and θ is acute, find θ to the

nearest minute.

(p) Solve $2m^2 = 18$.

1

1

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Name: _

1	Mathematics Clas Fick the box)	SS
10MaA		
10MaB	Ms Ward	
10MaC	Mr Boros	
10MaD	Ms Evans	
10MaE	Mr McQuillan	
10MaF	Mr Gainford	

Marker Use Only

Section	Mark
B	/20

Page 6 of 24

.../exams/2006/Year10/Yearly06.tex

(g)

Find the ratio of areas, $\triangle ABC : \triangle DEC$.

(h) A circle has the equation

$$(x-4)^2 + (y+5)^2 = 100$$

Find the

- (i) coördinates of the centre, _____
- (ii) radius. _____
- (i) If $\sqrt{A} = n + 4$, find the value of 3A.

Find the exact value of $\cos \theta + \sin \theta$.

Use the Cosine rule to find the length of BC (correct to 2 dec. pl.).

End of Section B

2

2

1

Extra working page

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Name: _____

	Mathematics Clas	SS
(.	Fick the box)	
10MaA	Mr Fuller	
10MaB	Ms Ward	
10MaC	Mr Boros	
10MaD	Ms Evans	
$10 \mathrm{MaE}$	Mr McQuillan	
10MaF	Mr Gainford	

mainer ose only	Marker	Use	Only
-----------------	--------	-----	------

Section	Mark
\mathbf{C}	/20

Question	3	(20	marke

Answers

a)	7 cm 8 cm	
	Find the size of θ (to the nearest degree).	
	Two similar rectangles have areas of 160 cm ² and 90 cm ² . (i) Express the ratio of these areas in simplest form.	
	ii) What is the ratio of the sides of the two rectangles?	
c)	A square pyramid has a base of 10 cm and vertical height of 12 cm. Find the: (i) volume of the pyramid,	
	ii) surface area of the pyramid.	
	hight travels at 3×10^8 m/s. How many illometres does light travel in one hour?	

Page 10 of 24

.../exams/2006/Year10/Yearly06.tex

(e) Use the quadratic formula to solve the equation $2x^2 - 5x - 1 = 0$ (answer in exact form).

Extra working page

(f) Find the area of the parallelogram ABCD.

3

(g) If
$$(x+2)(x+k) \equiv x^2 + nx + 8$$
, find the values of k and n .

2

(h) Simplify
$$\frac{2^{-1} + 5^{-1}}{2^{-1} - 5^{-1}}$$
.

2

2

$$\frac{2}{\sqrt{5}-3}$$

End of Section C

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Name: _

Your Mathematics Class (Tick the box)		
10MaA	Mr Fuller	
10MaB	Ms Ward	
10MaC	Mr Boros	
10MaD	Ms Evans	
10MaE	Mr McQuillan	
10MaF	Mr Gainford	

Marker Use Only

Section	Mark
D	/20

Question 4 (20 marks) Answers (a) Find the values of the pronumerals in each case. (Do not give reasons.) In each diagram O is the centre of the circle. 2 2 2 2 $\frac{1}{70\%}T$ AT and BT are tangents. (v) 2 (vi) AT is a tangent. 2 (vii) 2

Page 14 of 24

(c) The surface area of two similar solids is in the ratio 4: 9. If the volume of the larger one is 243 cm³, find the volume of the smaller one.

3

3

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Name

Your Mathematics Class (Tick the box)		
	Mr Fuller	
10MaB	Ms Ward	
10MaC	Mr Boros	
10MaD	Ms Evans	
10 MaE	Mr McQuillan	
10 MaF	Mr Gainford	

Marker	Use	Only	
MIGINGI	USC	Omy	

Section	Mark
E	/20

stion 5 (20 marks)	Answers
a) -	
5 6 7 8 9 10 11 12 13 14 15 Consider the box-and-whisker diagram ab Find the: (i) interquartile range,	16 17 18 ove.
(ii) percentage of the scores that are from 3	3 to 15
(b) Given the following two sets of scores: A: 80 75 70 65 60 B: 72 71 70 69 68	
(i) Find the mean and standard deviation each case.	in
(ii) Which is the better result, a score of from A or 72 from B? Give reasons.	75
(c) What restrictions are there on x in each of following? (i) $\frac{x+4}{1-6x}$	the
1-6x	
(ii) $\sqrt{N^2-4x}$	
/exams/2006/Year10/Yea	arly06.tex 25/9/2006

A tourist drives $25\,\mathrm{km}$ from town P on a bearing of $150\,\mathrm{^oT}$ to town R.

He then drives $45 \,\mathrm{km}$ on a bearing of 022° to town Q.

(i) Find the size of $\angle PRQ$.

[1]

(ii) Calculate the distance of town Q from town P to the nearest kilometre.

2

(e) If A(5, k), B(2, 7), C(2, 1) are vertices of a triangle, find the area of the triangle.

3

(f) Find the next term of the sequence $1, 9, 35, 91, \ldots$

2

1

(g) ABCD is any parallelogram where $\sin A = k$.

Find $\sin B$.

(h) Simplify $\frac{m(m-c)-3(c-m)}{m^2-c^2}.$

1

End of Section E

Extra working page

2006 YEAR 10 YEARLY EXAMINATION

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams and graphs.
- If additional working space is needed, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board-approved calculators may be used.

Time allowed: 2 Hours Examiner: Mr C. Kourtesis

Name: _

Your Mathematics Class		
(Tick the box)		
10MaA.	Mr Fuller	
10MaB	Ms Ward	
10MaC	Mr Boros	
10MaD	Ms Evans	
10MaE	Mr McQuillan	
10MaF	Mr Gainford	

Marker Use Only

Section	Mark
F	/20

Question 6 (20 marks)

Answers

2

1

2

2

Find the value of x.

(b) (i) Expand and simplify $(x+y)^3$.

(ii) If x + y = 1 and $x^3 + y^3 = 19$, find the value of $x^2 + y^2$.

(c) A ABCD is a square with 3 point T inside the square such that DT = CT = DC. Prove that triangle ATB is isosceles.

The diagram shows the graph of $y = (x - c)^2$ and y = x + t, where C and t are positive. The graphs intersect on the y-axis at T. Find the equation relating c and t.

Page 22 of 24

.../exams/2006/Year10/Yearly06.tex

3

In the triangle ABC, find the exact value of $\frac{x}{y}$.

(g) The diagram shows a major sector of a circle with centre O and radius r. Find the area of the shaded region.

A circle of radius 6 and centre O has an isosceles triangle PQR inscribed in it, where PQ = PR.

A second circle touches the first circle and the mid point of the base QR of the triangle as shown.

The side PQ has a length $4\sqrt{5}$.

M is the midpoint of QR. Let OM = x and QR = 2y.

(i) Explain why $x^2 + y^2 = 36$.

(ii) Find the radius of the smaller circle.

[2]

End of Section F

	on 1 (20 marks)	Answers	Marks
(a)	Simplify: (i) $3k + 2 + k$	4k +2	1
•	(ii) $\frac{3a+a}{8+4} = \frac{3a+2a}{6}$. 5a	. 1
(b)	Find 8% of \$2700.	\$\frac{1}{2}Mo	1
(c)	Simplify: (i) $\frac{\sqrt{130}}{\sqrt{5}}$	126	1
	(ii) $\frac{4+8m}{4}$	172m	1
(d)	Factorise $ab + 2a^2$.	a (5+ Zel)	1
(e)	Solve $4t-1=\frac{1}{2}$. $4t-2=1$	623	1
(f)	Evaluate $\frac{\sqrt{22500}}{2.5 \times 6.4}$.	9.375 = 75	1
(g)	Simplify $\frac{(a^4)^4}{a^2}$	a ¹⁴	1
(h)	Solve simultaneously		1
	y = 2 and $y + 6 = 2x$ $2 + 6 = 2n$ $2n = 6$ $2x = 4$	(4,2)	

Page 2 of 24

.../exams/2006/Year10/Yearly06.tex

Answers

(a) Theo invested \$8 000 for a period of four years to earn compound interest of 8% p.a. What is the amount of interest that Theo will earn?

2

A=8000(1.08)4=10883.91 T=A-P

(b) Solve the equation (2m+1)(4-m)=0.

1

2

M=4. or m=-+

(c)

Use the Sine rule to calculate the length of the side PQ correct to the nearest metre.

PQ=648m

(d) Find the area of the curved surface of the cone. (Answer in terms of π .)

2

A= Trs. $= 11 \times 7^{2} \times 25$

(e) If $V = \frac{G^2h}{4\pi}$ (G > 0),

2

express this with G as the subject.

G = 1.4TV

- (f) A sphere has a diameter of 10 cm. Find the
 - (i) volume (in terms of π),

1

(ii) surface area (in terms of π).

1

Page 6 of 24

.../exams/2006/Year10/Yearly06.tex

25/9/2006

(g)

Find the ratio of areas, $\triangle ABC : \triangle DEC$.

 $2^{1}:5^{2}=4:25$

(h) A circle has the equation

$$(x-4)^2 + (y+5)^2 = 100$$

Find the

(i) coördinates of the centre,

(ii) radius.

1

2

(i) If $\sqrt{A} = n + 4$, find the value of 3A.

2

2

1

12=322+242+48

Find the exact value of $\cos \theta + \sin \theta$.

(k) $10\,\mathrm{cm}$

Use the Cosine rule to find the length of BC(correct to 2 dec. pl.).

=72+102-2x7x10cos70 = 101.117 BC= 10.06cm

End of Section B

(a)
$$7 \text{ cm}$$
 8 cm θ 61°

Find the size of θ (to the nearest degree). So $\Theta = \frac{8 \sin 6!}{92}$

⊕ = 88.31069363 v2

- (b) Two similar rectangles have areas of 160 cm² and $90 \, \mathrm{cm}^2$.
 - (i) Express the ratio of these areas in simplest 160:90

1

(ii) What is the ratio of the sides of the two rectangles?

1

1

4:31

(c)

A square pyramid has a base of 10 cm and vertical height of 12 cm.

Find the:

V= /3×12×102

= 400cm3

(ii) surface area of the pyramid.

height o. (2 = 52 + 12?

3 ′

(d) Light travels at $3 \times 10^8 \,\mathrm{m/s}$. How many kilometres does light travel in one hour?

1

- 34105 Kmls

3×108m/s

1.8×107 km/m 1.08 v109 1cm/hr.

.../exams/2006/Year10/Yearly06.tex

25/9/2006

(e) Use the quadratic formula to solve the equation $2x^2 - 5x - 1 = 0$ (answer in exact form).

2

$$x = \frac{5 \pm \sqrt{5}^{3} - 4\sqrt{2}x - 1}{2x^{2}}, \qquad x = \frac{5 \pm \sqrt{33}}{4},$$

$$= \frac{5 \pm \sqrt{25 + 8}}{4}$$

(f) Find the area of the parallelogram ABCD.

A= 2× 1 absinc 1

= 2 x 1 v7.1x10.3x Sin 28° 14' 1

(g) If $(x+2)(x+k) \equiv x^2 + nx + 8$, find the values of k and n. 8. K=4. 1/2 $x^{2} + x + 2x + 2k = x^{2} + n + 8$ d K+2=0 $x^{2} + (k+2)x + 2k = x^{2} + nx + 81$

5, n=6 1/2

(h) Simplify
$$\frac{2^{-1} + 5^{-1}}{2^{-1} - 5^{-1}} = \frac{\frac{1}{2} + \frac{1}{5}}{\frac{1}{2} - \frac{1}{5}} = \frac{-\frac{7}{10}}{\frac{3}{10}}$$

$$= \frac{7}{3}, 2\frac{1}{3}, 2-\frac{3}{3}$$

(i) Express with a rational denominator

2

2

End of Section C

Question 4 (20 marks)

Answers

(a) Find the values of the pronumerals in each case. (Do not give reasons.) In each diagram ${\cal O}$ is the centre of the circle.

2

2

2

2

2

2

2

(iii)

(iv)

$$\chi = 70^{\circ}$$
. (1)
A = 140 (1)

 $\frac{1}{70\%}T$ AT and BT are tangents.

Page 14 of 24

AT is a tangent. δ

.../exams/2006/Year10/Yearly06.tex

25/9/2006

(b) Use the Cosine rule to find the size of θ (correct to the nearest degree).

3

(c) The surface area of two similar solids is in the ratio 4:9. If the volume of the larger one is 243 cm³, find the volume of the smaller one.

$$\left(\frac{\text{Solid } A}{\text{Solid } B}\right)^2 = \frac{4}{9} \Rightarrow \frac{\text{Solid } A}{\text{Solid } B} = \frac{2}{3}.$$

$$\frac{\text{Vol solid As muller}}{243} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$8 \times 243 = 70$$

Solid
$$A = \frac{2}{3}$$
 Vol solid $A \le \frac{1}{3}$ Vol solid $A \le \frac{1}{3}$ Vol. smaller one $= \frac{8 \times 243}{27} = \frac{3}{12}$ cm

End of Section D

Find the value of x.

$$\frac{x}{5} = \frac{5}{4}$$

$$x = \frac{25}{4}$$

(b) (i) Expand and simplify $(x+y)^3$. $\Rightarrow (x+y)^2(x+y)$ 1 = $(x^2 + 2xy + y^2)(x+y)$ = $x^3 + 2x^2y + xy^2 + yx^2 + 2xy^2 + y$ = $x^3 + 3x^2y + 3xy^2 + y^3$

(ii) If
$$x + y = 1$$
 and $x^3 + y^3 = 19$, find the value of $x^2 + y^2$.

 $(x+y)^{\frac{1}{2}} = x^2 + \frac{2}{2}xy + y^3$
 $x^2 + y^2 = (x+y)^2 - 2xy$
 $x^2 + y^2 = (1)^2 - 2 \cdot (-6)^2 = 13$.

 $(x+y)^3 = x^3+y^3 + 3xy(x+y)$ $(1)^3 = 19 + 3xy(1)$

2

ABCD is a square with point T inside the square such that DT = CT = DC. Prove that triangle ATB is isosceles.

DT=TC=DC (given) : AOTC is an equilateral 3 LTDC= LTCD=60° (angles in equilateral) AO=BC (sides of triangle LADT - LBCT = 30° (complementary angles) ADT = ABCT (SAS) : AT= TB (corresponding sides of congruent triangles : AATB is isosceles

The diagram shows the graph of $y = (x - c)^2$ and y = x + t, where C and t are positive. The graphs intersect on the y-axis at T. Find the equation relating c and t.

when x=0 $y=C^2$ y=t $t=C^2$

Page 22 of 24 .../exams/2006/Year10/Yearly06.tex

25/9/2006

(e) A train left Sydney at r a.m. and arrived at its destination at t p.m. the same day. Find an expression for the number of hours taken.

12-r+t

In the triangle ABC, find the exact value of $\frac{x}{y}$.

(g) The diagram shows a major sector of a circle with centre O and radius r. Find the area of the shaded region.

$$A = \frac{2r}{2\pi r} \times \pi r^{2}$$

$$= r^{2} \text{ square units}$$

A circle of radius 6 and centre O has an isosceles triangle PQR inscribed in it, where PQ = PR. A second circle touches the first circle and the mid point of the base QR of the triangle as shown. The side PQ has a length $4\sqrt{5}$. M is the midpoint of QR. Let OM = x and QR = 2y.

diameter .../exams/2006/Year10/Yearly06.tex of smaller arcle is 6-(3)=16 radius of smaller enelle

1

1

[2]

Page 23 of 24