

MOORE PARK, SURRY HILLS

2007 Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name:_____

Your Mathematics Class (Tick the box)			
10MaA	Mr Boros		
10MaB	Ms Evans		
10MaC	Ms Nesbitt		
10MaD	Mr Kourtesis		
10MaE	Mr Gainford		
10MaF	Ms Ward		

Marker U	Jse Only
----------	----------

Question	Mark
1	/20

Que	stion One (20 marks)	Answer	Marks
A	Factorise $x^2 + 12x + 35$.		1
В	Find the value of a if $a\sqrt{7} = \sqrt{112}$.		1
С	If this spinner is spun, what is the probability that it will point to sector B. A D 55° 75° B C		1
D	Find the interest paid on a \$30 000 loan with a flat rate of 9% p.a. for 10 months.		1
Е	Solve $\frac{p}{3} - \frac{p}{5} = 1$.		1
F	A conical cocktail glass in 8 cm across and 8 cm deep. How many millilitres will it hold? (Correct to nearest millilitre.)		1
G	Two squares have side lengths in a ratio of 5:7 what is the ratio of their areas?		1
Н	Write $\left(\frac{2a}{b^3}\right)^{-2}$ without parentheses or negative indices.		1
I	Solve $(x+4)(3x-6) = 0$		1
J	Find the volume of a cylinder with radius 5cm and height 8cm to the nearest cubic centimetre.		1

K	If the point (2, -1) lies on the hyperbola	
17		1
	$y = \frac{k}{x}$, what is the value of k ?	
	X .	
	·	
L	The results of a 10En3 class essay	
-	were:	2
	5 6 6 7 9 11 11	
	13 13 13 13 16 17 20	
	15 15 15 15 16 17 20	
	TD 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Draw a neat box-and-whisker plot for	
M	this data. Find the value of x correct to 2 decimal	
IVI	places.	2
	places.	
	7 cm	
	32°	
	x cm 32	
	,	
N	Rationalise the denominator of $\frac{2}{1-\sqrt{3}}$.	2
	$1-\sqrt{3}$	
0	Solve and graph $\frac{8-x}{3} > 2$.	2
	3	
		·
P	P-4-1: 2 7 2 7	
1	Factorise $x^2 + 7x - y^2 - 7y$.	1

End of Question One

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2007 Year 10 Yearly Examination

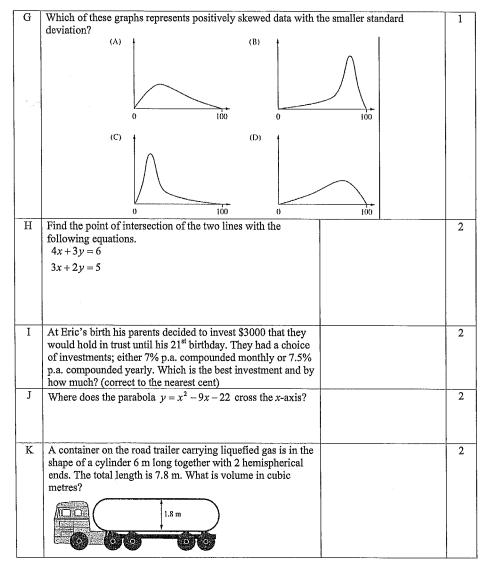
Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used

Time allowed: 2 hours.

Examiner: D.McQuillan


Name:

Your Mathematics Class		
10MaA	Mr Boros	
10MaB	Ms Evans	
10MaC	Ms Nesbitt	
10MaD	Mr Kourtesis	
10MaE	Mr Gainford	
10MaF	Ms Ward	

Question	Mark
2	/20

Que	stion Two (20	marks)		Answ	er		Marks
A	Solve $5x^2 - 14x$	c-3=0.					1
В	Taryn wants to	horrow money	y to hijy a hoj	ise. The bank	sent her an e	mail with the	
_	following table		, to buy a not	iso. The bunk	sont not an c	inan with the	
	•		Monthly re	epayments			
				Term of loan			
	Amount	10 years	15 years	20 years	25 years	30 years	
	DOTTORES	120 months	180 months	240 months	300 months	360 months	
	\$80,000	\$970.62	\$764.52	\$669.15	\$617.45	\$587.01	
	\$90,000	\$1091.95	\$860.09	\$752.80	\$694.63	\$660.39	
	\$100 000	\$1213.28	\$955.65	\$836.44	\$771.82	\$733.76	
	\$110 000	\$1334.60	\$1051.22	\$920.08	\$849.00	\$807.14	
	\$120,000	\$1455.93	\$1146.78	\$1003.73	\$926.18	\$880.52	
	\$130,000	\$1577.26	\$1242.35	\$1087.37	\$1003,36	\$953.89	
	\$140 000	\$1698.59	\$1337.91	\$1171.02	\$1080.54	\$1027.27	
	\$150,000	\$1819.91	\$1433.48	\$1254.66	\$1157.72	\$1100.65	
	\$160,000	\$1941.24	\$1529.04	\$1338.30	\$1234.91	\$1174.02	
	(i) Tary is the maximum the loan?	n decides that amount she	t she can affo can borrow, a	rd \$1000 per nd how many	month on rep years will sh	ayments. What e have to repay	1.
					•	he same bank.	· · · · · · · · · · · · · · · · · · ·
	he pay?						2
С	Substitute X =	$\frac{1}{a}$ into $\frac{2}{X} + 3$	3X then simp	lify.			1

D	It is possible to precisely fit an octahedron inside a sphere such that the six vertices all touch the surface of the sphere. If an octahedron was precisely fitted within a sphere of radius 5 cm what would be the volume of the octahedron? Octahedron	2
Е	Use the sine rule or otherwise, find the value of x correct to 2 decimal places.	2
	70° 8	
F	Find the equation of the line that passes through (0, -2) and	2
	(2, 6). Write your answer in general form.	

End of Question Two

MOORE PARK, SURRY HILLS

2007Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used

Time allowed: 2 hours.

Examiner: D.McQuillan

Name

	Your	ass	
		(Tick the box)	
	10MaA	Mr Boros	
ĺ	10MaB	Ms Evans	
	10MaC	Ms Nesbitt	
	10MaD	Mr Kourtesis	
	10MaE	Mr Gainford	
	10MaF	Ms Ward	
	· · · · · · · · · · · · · · · · · · ·		

Question	Mark
3	/20

Que	stion Three (20 marks)	Answer	Marks
A	Given the two points (-5,3) and		1
	$\left(5\frac{1}{2}, 3\frac{1}{4}\right)$ and the circle $x^2 + y^2 = 36$		
	which of the following is true.		
	(I) Both points are inside the circle.		
	(II) Both points are outside the circle.		:
	(III) One point is inside and the other is outside the circle.		
	(IV) One point is on the circle and the other is inside.		
В	In the formula $M = \sqrt{t-3}$, which values can t possibly take?		1
С	Find the value of x correct to 2 decimal places.		2
	20		
D	Four cards with the numbers 1,4, 5 and 7 written on them are picked at random and used to form a four digit number. Find the probability that the number is		2
	(i) odd?		
	(ii) greater than 5200?		
Е	Solve $2x^2 - 12x + 17 = 0$. Write your answer in simplified surd form.		2

F	What is the equation of this parabola?	2
	6 -4 -2 2 4 6 x	2
G	TP is a tangent. Find the value of x.	2
	5.1 cm 4.9 cm P	
Н	Given the points A(-1, 1), B(2, 5) and C(7, -3) find the coordinates of point D such that ABCD is a parallelogram.	2

I	Finola selected 30 students at random from Year 10 at her high school, and asked each of them how many text messages they had sent from a mobile phone within the last day. The results are summarised in the following table.				4	
	day. The	resurts are summ	Number of text messages sent	Frequency		
			0	3		
			1	3		
			2	4		
			3	4		
			4	9		
			5	7		
	(i)	Determine the	median number of te	ext messages se	nt.	
				_		
	<i>(</i> 11)	771 1 d d d d				
	(ii)	Find the inter-	quartile range of text	messages sent		
	(iii)		nean number of text decimal places.)	messages sent.	(Give your answer	
	(iv)	Calculate the s places.)	tandard deviation. (C	Give your answ	er correct to two decimal	
J	(i) Find	arabola $y = x^2 + 1$ the equation of metry.				2
	(ii) And of th	hence the mining parabola.	num <i>y-</i> value			

End of Question Three

MOORE PARK, SURRY HILLS

2007 Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name:

Your	Your Mathematics Class		
	(Tick the box)		
10MaA	Mr Boros		
10MaB	Ms Evans		
10MaC	Ms Nesbitt		
10MaD	Mr Kourtesis		
10MaE	Mr Gainford		
10MaF	Ms Ward		

Question	Mark
4	/20

Que	stion Four (20 marks)	Answer	Marks
A	Two unbiased dice are thrown. Each die has six faces. The faces are numbered 1, 2, 3, 4, 5 and 6.	·	3
	(i) What is the probability that neither shows a 6?		
	(ii) Mark plays a game with these dice. There is no entry fee.		
	When the dice are thrown:		
	 Mark wins \$20 if both dice show a 6. He wins \$2 if there is only one 6. He loses \$2 if neither shows a 6. 		
	How much will he expect to win/lose after playing 10 games?		
В	For θ between 0° and 180° find all values of θ to the nearest degree such that $\sin \theta = 0.342$.		1
C	Solve $3(3^x)^2 - 28(3^x) + 9 = 0$ for x .		2
D	O is the centre of a circle with radius 4cm. Find the area of the shaded region to the nearest square centimetre.	,	2

Е	The manufer of the	- W 10	TT-1CX7 1		
Е	The results of the Year 10 Half Yearly Exams are given in the table.				2
	-Adding are green	Mean	Standard		
		Mean	Deviation 1		
	English	62	7		
	Mathematics	75	11		
	History	68	10		
	(i) Andrew's r				
	English, 86	for Math	ematics and		
			is subjects in performance,		
	best to wor		errormance,		
	365010 1101				
	In normally dist				
	data points will	be above t	he mean and		
	68% of data poin	nts will fal	ll within one		
	standard deviation	on of the r	nean.	·	
	(ii) If 175 stude	ante did m	athematica		
	and the resi				
			y people beat		
	Andrew?		y proposition		
F	What length of v	vire is nee	ded to build		2
	the frame of a so length 1 metre a	luare pyra	mid with base	·	
	Answer in metre				
	nearest centimet		to the		
	nourost continue				
G	Ronald is thinking				2
	BMW M5 for \$8				
	depreciate 20%			·	
	every year after,				
	take for the car t its value? (Using				
	working require		, 110		
	stang roquiro	٠.,			

H	To buy the BMW M5 (\$81 200) Ronald makes a 10% deposit and borrows the remainder at an interest rate of 8% p.a The interest is calculated monthly and repayments of \$866.66 are made at the end of the month so that the loan is paid off after 10 years.	3
	(i) Calculate the amount still owing at the end of 3 months.	
	(ii) Determine the total amount of interest paid on the entire loan.	
	(iii) What is the equivalent flat rate of interest?	
I	Given the following figure.	3
	A	
	16 cm	
	B 14 cm C 8 cm E	
	(i) Prove that ΔABC ΔCDE.	
	(ii) Hence find the length of AB.	

End of Question Four

MOORE PARK, SURRY HILLS

2007 Year 10 Yearly Examination

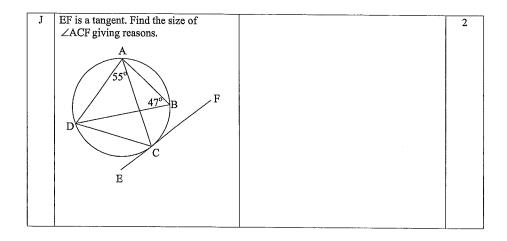
Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan


Name:

Your	Your Mathematics Class		
	(Tick the box)		
10MaA	Mr Boros		
10MaB	Ms Evans		
10MaC			
10MaD	10MaD Mr Kourtesis		
10MaE Mr Gainford			
10MaF	10MaF Ms Ward		

Question	Mark
5	/20

Que	stion Five (20 marks)	Answer	Marks
A	Use the "completing the square		2
	method" to solve $x^2 - 6x + 7 = 0$.		
	Leave your answer in surd form.		
		~ .	
B	Find the points of intersection of		2
'	$y = x^2 + 6x - 21$		
	y = 15 - 3x		
	TC/1 - C-11 - 1 - 1 - 1 - 1		
C	If the following sector was to be bent into a cone what would be the base		2
	radius? Answer in exact form.		
i	radius: Answer in exact form,		
1 1			,
	10 cm		
	TO CIII		
D	Two similar solids have volumes		2
	105.6 cm ³ and 1650 cm ³ . If the smaller		
	solid has a surface area of 83.8 cm ² ,	_	
	what is the surface area of the larger solid?		
	solid?		
E	The three legs of a triangular sailing		2
-	course are 700 m, 1000 m and 1400 m.		
	Find the largest angle (correct to the		
	nearest degree) through which the boats		
	must turn when completing two laps of		
	the course.		
		!	
L	1		L

F	Sketch the graphs of $y = x^3$ and	, , , , , , , , , , , , , , , , , , ,	2
	$y = \frac{1}{2}x^3$ on the same axes.	3	
		-5 -4 -3 -2 -1	
		-3	
G	Sketch the graphs of the equations $y = 3^x$ and $y = 3^{-x}$ on the same axis.		2
		3	
		5 -4 -3 -2 -1	
		-3	
H	Find all possible values of θ correct to the nearest minute.		2
	12 m 16 m 42°		
	<u> </u>		
I	Find the radii of two spheres if the difference of their radii is 25 mm and the difference of their surface areas is $10~000\pi~\text{mm}^2$.		2

End of Question Five

MOORE PARK, SURRY HILLS

2007 Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name:

Your Mathematics Class			
	(Tick the box)		
10MaA	Mr Boros		
10MaB	Ms Evans		
10MaC	10MaC Ms Nesbitt		
10MaD	Mr Kourtesis		
10MaE	Mr Gainford		
10MaF Ms Ward			

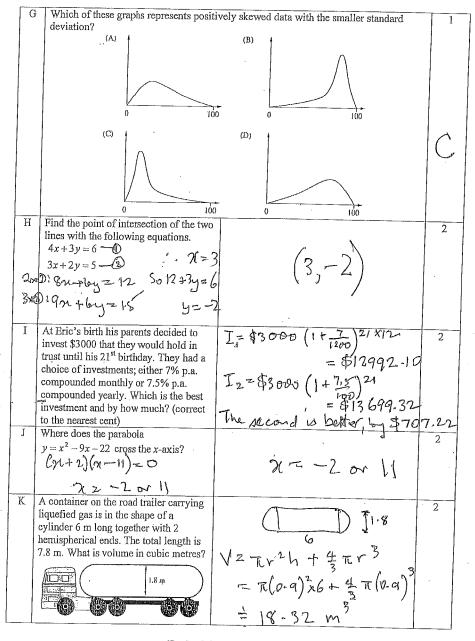
Question	Mark
6	/20

	stion Six (20 ma		Answer	Marks
A	Paul has two child what is the probaba a boy?	lren. If one is a bo oility that the othe	by r is	1
В	The total resistance given by the form where R_1 and R_2 a parallel. Find R_2 it total resistance.	rula, $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ are resistors in	1 2	2
С	Durability of Tyre	ompany ran endur are given in the t Frequency	Relative	tyres. The 1
С	Durability of Tyre (1000's km)	are given in the f	following table.	tyres. The 1
С	Durability of Tyre	are given in the	following table. Relative	tyres. The 1
С	Durability of Tyre (1000's km) <120	Frequency	following table. Relative	tyres. The 1
С	Durability of Tyre (1000's km) <120 120-140	Frequency 38 62	following table. Relative	tyres. The 1
C	Durability of Tyre (1000's km) <120 120-140 140-160	Frequency 38 62 90	following table. Relative	tyres. The 1
С	Durability of Tyre (1000's km) <120 120-140 140-160 >160	Frequency 38 62 90 10	following table. Relative	tyres. The 1

D	P(3, 4) is a point on the circle		3
	$x^2 + y^2 = 25$. Find the length of the		
	minor arc PQ correct to three significant figures.		
	significant figures.		
	y)		
	P(3, 4)		
	$\frac{1}{0}$		
	Q x		
1			
E	The Golden Ratio is defined such that		
"	the ratio of the small part to the big part		3
	is equal to the ratio of the big part to the		
	whole. Find the Golden Ratio in exact		
-	form.		
			*
		•	
F	AB is a chord of the circle centre O.		
*	AB is parallel to CO. Prove that		3
ļ	angle ADC is three times the size of		
	angle ABC.		
İ			
	A B		
		·	
	D		
	$c \longrightarrow c$		

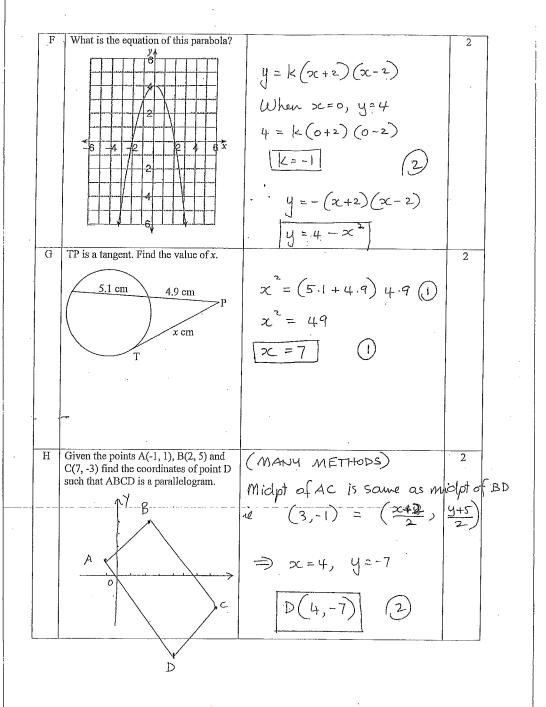
Chris is in a boat at point A, which is 3 km from the nearest point O of a straight beach. He rows in a straight line from A to a point B on the beach at 4 km/h. He then walks along the beach, at 6 km/h to point C which is 8.5 km along the beach from the point O. 3 km — x km —**→**B - 8.5 km ---(i) Write an expression for the time in 2 terms of x (the distance B is from O) it takes Chris to row to point B. (ii) If it takes Chris 2 hours to reach point C from point A, find all possible values of x (that is distances that B could be from O).

End of Exam


Que	estion One (20 marks)	Answer	Marks
A	Factorise $x^2 + 12x + 35$.	(x+7)(x+5)	1
В	Find the value of a if $a\sqrt{7} = \sqrt{112}$.	$\sqrt{112} = \sqrt{16} \times 7 = 4\sqrt{7}$. Q = 4.	1
С	If this spinner is spun, what is the probability that it will point to sector B.	360-60-55-75=150	1
	D 55° 80° B	$\frac{150}{360} = \frac{5}{12}.$ $P = \frac{5}{12}, 0.416$	
		,	
D	Find the interest paid on a \$30 000 loan with a flat rate of 9% p.a. for 10 months.	I= 3ccoox = 9 x 10 I= 2250	1
Е	Solve $\frac{p}{3} - \frac{p}{5} = 1$.	$\frac{5p-3P=1}{15} = 1$ $2p=15 P = \frac{15}{2} = 7.5$	1
F	A conical cocktail glass in 8 cm across and 8 cm deep. How many millilitres will it hold? (Correct to nearest millilitre.)	$V = \frac{1}{3} \pi r^2 h$ = $\frac{1}{3} \pi x 4^2 x 8$ = 134 (mL)	1
G	Two squares have side lengths in a ratio of 5:7 what is the ratio of their areas?	25: 49.	1
Н	Write $\left(\frac{2a}{b^3}\right)^{-2}$ without parentheses or negative indices.	10° 40°.	1
I	Solve $(x+4)(3x-6) = 0$	x = 4 $x = -2$. 1
J	Find the volume of a cylinder with radius 5cm and height 8cm to the nearest cubic centimetre.	V=πr ² h. = πx 5 ² x 8. = 628 cm ³ .	1

i		·	
K	If the point (2, -1) lies on the hyperbola	-1= 上	1
	$y = \frac{k}{r}$, what is the value of k?	$-1=\frac{K}{2}$	
		.'. K=-2	
T-	The results of a 10En3 class essay		2
L	were:		2
	5 6 6 7 9 11 11		,
	13 13 13 13 16 17 20	56789101112131415161718	1920
		•	
	Draw a neat box-and-whisker plot for		
M	this data. Find the value of x correct to 2 decimal		2
141	places.	tan 32= 1/x.	22
		7.	
		•	
	7 cm		
	320	x= <u>1</u> tan32	
	x cm	CAI 152,	
		= 11.20cm.	
N	Rationalise the denominator of $\frac{2}{1-\sqrt{3}}$.	= == (1+13)	2
	Rationalise the denominator of $1-\sqrt{3}$	ラ(1719)	
l .	2 45 20+1	=-1-13	
	$\frac{2}{1-13} \times \frac{1+13}{1+13} = \frac{2(1+17)}{1-3}$		
	1-10 1+13 1-0		
0	Solve and graph $\frac{8-x}{3} > 2$.		2
	8-x>6	-2-1012	
	-x>-2.	-2-1012	
	x42	•	
P	Factorise $x^2 + 7x - y^2 - 7y$.	- 6x 11/2x 11/2	1
		= (x-y)(x+y+7)	.
	$x^2 - y^2 + 7x - 7y$		
	=(x+y)x-y+7(x)	-i)	
-	12, July 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	

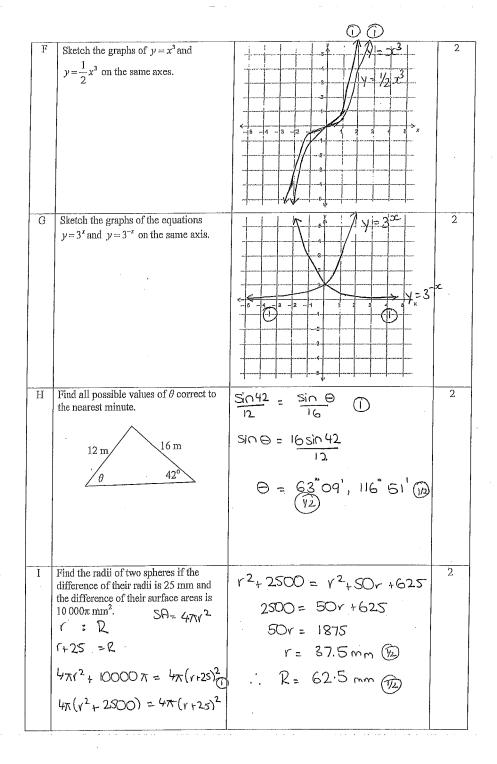
End of Question One

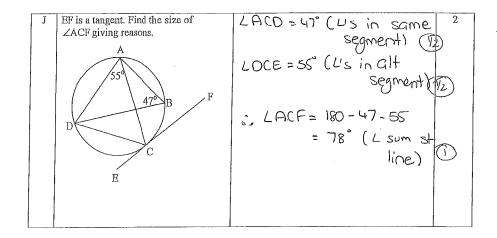

On	estion Two (20	marke)		Answer			Marks
A	Solve $5x^2 - 14x$	-3 = 0. G	. , 1				1
	(5x+1)(9c-	-3)=0	\times	21 =	- 15 7	3	
	0=-15,		(\-3		5 1		
В	Taryn wants to borrow money to buy a house. The bank sent her an email with the						
	following table a		to buy to the				
			Monthly	repayments			
				Term of loan			
	Amount	10 years	15 years	20 years	25 years	30 years	
		120 months	180 months	240 months	300 months	360 months	
	\$80 000	\$970.62	\$764.52	\$669,15	\$617.45	\$587.01	
	\$90 000	\$1091.95	\$860.09		\$694.63	\$660.39	
	\$100 000	\$1213.28	\$955.65		\$771.82	\$733.76	
	\$110 000	\$1334.60	\$1051.22		\$849.00	\$807.14	
	\$120,000	\$1455.93	\$1146.78	\$1003.73	\$926.18	\$880.52	
	\$130,000	\$1577.26	\$1242.35	-	\$1003.36	\$953.89	
	\$140,000	\$1698.59	\$1337.91	\$1171.02	\$1080.54	\$1027.27	
	\$150,000	\$1819.91	\$1433.48	\$1254.66	\$1157.72	\$1100.65	
	\$160 000	\$1941.24	\$1529.04	\$1338.30	\$1.234.91	\$1174.02	
	the ma					yments. What will she have	
		\$130	,000	, 30	years		-
	(ii) Dougl	as intends to	borrow \$160	000 over 15 y	ears from the	same bank.	
		chooses to bor st will he pay		00 over 20 yea	rs instead, ho	w much more	2
	\$	2752	27-20		32119		
		(15 yr	(چ		(20 grs	•	
		Č	ix dra l	uterest:	\$459	64	
С	Substitute $X = \frac{1}{a}$	into $\frac{2}{x} + 3X$	then				1
	simplify.			•			
	$\frac{2}{1/a} + 31$	$\left(\frac{1}{a}\right) = 2$	a 134	2	lat ?	3	
				<u>. </u>			

D	It is possible to precisely fit an octahedron inside a sphere such that the six vertices all touch the surface of the sphere. If an octahedron was precisely fitted within a sphere of radius 5 cm what would be the volume of the octahedron?	Eight pyramide 535 -'. Vd = 8x 2x 3x 5x 5 = 500 3 = 166.6 cm ³	2
Е	Octahedron Use the sine rule or otherwise, find the value of x correct to 2 decimal places.	$\frac{2C}{\sin 70} = \frac{8}{\sin 40}$ $2 = \frac{8 \sin 70}{\sin 40}$ $= 11.70$	2
F	Find the equation of the line that passes through $(0, -2)$ and $(2, 6)$. Write your answer in general form. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4n-y-2=0	2

End of Question Two

Qu	estion Three (20 marks)	Answer	Marks
Ā	Given the two points (-5,3) and		1
	$\left(5\frac{1}{2}, 3\frac{1}{4}\right) \text{ and the circle } x^2 + y^2 = 36$	Distance from (-5,3) to 0	
	which of the following is true.	is 534 4 radius (=6)	
	(I) Both points are inside the circle.	(-5,3) INSIDE	
	(II) Both points are outside the circle.		
	-(III) One point is inside and the other is outside the circle.	Distance from (5½, 3¼)	
	(IV) One point is on the circle and the other is inside.	to 0 is \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(=6)
В	In the formula $M = \sqrt{t-3}$, which values can <i>t</i> possibly take?	t-3 20	1
		·. [t ≥ 3]	
С	Find the value of x correct to 2 decimal places.	By Cosine Rule	2
	x 17	$x^{2} = 17^{2} + 20^{2} - 2.17.20 \cos 35^{\circ}$	
	20	2C = 11.49 (1)	
D	Four cards with the numbers 1,4, 5 and 7 written on them are picked at random and used to form a four digit number. Find the probability that the number is		2
		(1) 18/24 = 3/4	
	(ii) greater than 5200?	$(i) \frac{18}{24} = \frac{3}{4}$ (i) $(ii) \frac{10}{24} = \frac{5}{12}$ (i)	
Е	Solve $2x^2 - 12x + 17 = 0$. Write your answer in simplified surd form.	$\chi = \frac{-(-12)^{\frac{1}{2}}\sqrt{(-12)^2 - 4(2)(17)}}{4}$	2
		$X = 12 \pm \sqrt{8} = 12 \pm 2\sqrt{2}$	6±5
		(2) 7/3/5/8 TZ	


I Finola selected:	30 etudenta et	non dom fuer-	V 10 (1 1:	1 1 1 1 1 1 1	
of them how ma	ny text messa	random from	rear 10 at her hi	gh school, and asked eac	h 4
day. The results	are summaris	ed in the follo	wing table.	e phone whim the last	
				7	
	10				
	- ***				1
		0	3		
		1	3		
		2	4		
		3	4		1
		4	9		
		5			
(i) Determ	nine the medi		'		
(1)	inno ene mem	an number of	text messages se	nt.	
	. [4			
(ii) Find tl	ne inter-quarti	le range of tex	at messages sent.		
(1) (1)			CE 18.R =	4-2=2 (acces	
(111) Calculation correct	ate the mean r to two decim	number of text al places.)	messages sent. (Give your answer	
	ž	= 94 4	32 =	2 12 (1	
		30 "	_ 12 · [7	3.13	
(iv) Calcula	ite the standar	d deviation. (0	Give your answer	correct to two decimal	
1,			1 ~	•	
accust	On	= 1.63	(1)	,	
	<u> </u>				·.
For the parabola vi	$= r^2 + 2r + 5$				
		not (i)	26 - h	2	2
	non or the axi	* (I)	20		
		İ			
I			12	C = -11	
(ii) And hence the	minimum 12.	volue (i	14. () ³	21/12	1
of the parabola	1.	rando (h.)	9=(-1)	+ 4(4) +3	
			u = 4		
			٠, ١		
		1	ΛΛ 111 ()	$\frac{1}{\sqrt{2}}$	
			TIIN Value	13 4	
	(ii) Determined the day. The results (ii) Find the Q (iii) Calculate correct (iv) Calculate places.) For the parabola y (i) Find the equal symmetry.	(i) Determine the medical field of the inter-quartial $Q_1 = 2$ (iii) Calculate the mean recorrect to two decimination of the parabola $y = x^2 + 2x + 5$ (i) Find the equation of the axis symmetry.	day. The results are summarised in the followard of the standard deviation. (i) Determine the median number of text $Q_1 = 2$	the first how many text messages they had sent from a mobil day. The results are summarised in the following table. Number of text messages sent Frequency text messages sent	of them how many text messages they had sent from a mobile phone within the last day. The results are summarised in the following table. Number of Frequency


End of Question Three

QUESTION 4

to want to the second s	1 - 1 - 2 - 5 - 00		
	P(B, B) = 8 x 5 = 25 36	G	after 1 yr 64960
to constitution graves			9 years
(11)	P(6,6) = 36 X\$20 = \$5		. 0
	P(LI)+P(5.6)= 5x8+ 5x+	H	End Month 1
a new part of the same of	P(6,2)+P(5,6)= 5x 8 + 5x 4 = 19 x 52 = \$ 5	3	Amount after degos1+\$73080
, ,	PE,E) = 35 x-12 = 1/78		
tions and high-or - confirmation type of	Total = -\$ 5/18		73080× 151 - 866,86
	After 10 games loss of \$2.78		End North 2
			72700 X 151 866,66
<u>B</u>	20° 160°		= \$72.318,55
Ty page on propose constiguidad and constructive of the total			End Month 3
<u>C</u> :	$3a^2 - 28a + 9 = 0$ ($\alpha = 3^{21}$)		72318.55x151 866.66
NAME OF THE OWNER, A DESCRIPTION OF THE OWNER, THE OWNE	(3a-4)(a-9)=0		=\$11934
	$a = \frac{1}{3} a = 9$	(11)	
	$a = \frac{1}{3} a = 9$ $3^{x} = \frac{1}{3} 3^{x} = 9$. ` .	Interest = 866.66 x 120
·	$\chi = -1$, 2		-\$73080
D	A= 71/42 170 1 42 X S 170	, 1	= \$.30919:20
	A=71×41×120 _1×42 × Sin 120		
	= 9,82 = 10 cm	(111)	30919,20×100
	- 9,87 = 10 CM	T-C-11	
			73080 × 10 = 4,23 %
E	History Mark = Mean + SOR1.9		
March Walter for the March of the State of t	English Mk = Mcan+50x1.14	I(i)	LACB = DCF (verl op Ls)
	Malhs Me = Mean + 50 x 1		AC BE (given)
	HISTORY ENGUSH MATITS	THE REAL PROPERTY OF THE PERSON NAMED IN	
			1 ABE BCDE
	(ii) 175 x 16/2: 28 stud.		651des in proportinctuded
			argles equal)
F	4× 12.75. +4	(N)	AB = 16
	= 10,63 cm		8 1
			AB = 10 3 Civi
			The second secon
11 - A mary mentional consequence of the field debuts			80

Qu	estion Five (20 marks)	Answer	Marks
Ā	Use the "completing the square method" to solve $x^2 - 6x + 7 = 0$. Leave your answer in surd form.	$x-3 = \pm \sqrt{2}$ $x = 3 \pm \sqrt{2}$	2 .
	$x^{2}-6x = -7$ $x^{2}-6x+9 = -7+9$ $(x-3)^{2} = 2$	- 1 for no ±	
В	Find the points of intersection of $y = x^2 + 6x - 21$	$2^{2} + 62 - 21 = 15 = 32$	2
	y = 15 - 3x	$x^2 + 9x - 36 = 0$ (2c - 3 $x + 12$) = 0	
		x = 3, -12	
*		: y=6, 51	
С	If the following sector was to be bent into a cone what would be the base	C = 27r	2
	radius? Answer in exact form.	: 20k	
	C	= 5π O	
		5π = 2πr	
	10 cm	$r = \frac{6\pi}{2\pi}$ $r = \frac{5}{2}$	
D	Two similar solids have volumes 105.6 cm ³ and 1650 cm ³ . If the smaller	V : V 83.8=(J105.6)2x;	A.500
	solid has a surface area of 83.8 cm ² , what is the surface area of the larger	I sa . Sa	, _
	solid? $Q^3:b^3$	83.8: 6? SA big = (1/1650)2 = 523.75c	
Е	The three legs of a triangular sailing course are 700 m, 1000 m and 1400 m.	COS 0 = 7002 +10002 - 14002	2
	Find the largest angle (correct to the nearest degree) through which the boats	2× 700 ×1000	IJ
	must turn when completing two laps of the course.	= <u>- 470 000</u> 1 400 000	
	1000	0 = 109.6159.791	
	100/1400	= 110° (nearest degree)(i)
	10//1400	9.9	,, ()
	<i>r</i>		

End of Question Five

Z

Year 10 2007 Yearly exam Question b

B
$$= \frac{B}{G}$$

BB $= \frac{B}{G}$

We are only interested if

 $= \frac{B}{G}$

B $= \frac{B}{G}$

B $= \frac{B}{G}$

B $= \frac{B}{G}$

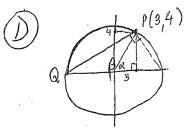
B boy given I boy already.

B $= \frac{B}{R_T}$

R $= \frac{R_2 + R_1}{R_1 R_2}$.

$$R, R_2 = R_T R_2 + R_T R_1$$

 $R, R_2 - R_T R_2 = R_T R_1$
 $R_2 (R_1 - R_T) = R_T R_1$
 $R_2 = \frac{R_T R_1}{(R_1 - R_T)}$
(c) (i) frequency totals 200 *
 $R = \frac{19}{100} = 0.19$
 $R = \frac{31}{200} = 0.31$
 $R = \frac{31}{200} = 0.31$
 $R = \frac{31}{200} = 0.45$


$$\frac{10}{200} = \frac{1}{20} = 0.05$$

$$\frac{10}{200} = \frac{1}{200} = 0.05$$

$$\frac{10}{200} = \frac{1}{200} = 0.05$$

 $\frac{90}{200} = \frac{9}{20} = 0.45$

$$(2)$$
 (ii) $\frac{100}{200} = \frac{1}{2}$ each type $(\frac{1}{2})^4 = \frac{1}{16}$.

$$\frac{6}{4}$$
 $\tan x = \frac{4}{3}$
 $\lambda = 63.8$
So $\beta = 180 - 63.8$
 $= 126.52$

Curamperence C=2TF=10TT semi dide aramperence = 5TT

$$\frac{6\pi}{180} = \frac{x}{126^{\circ}52^{\circ}},$$

$$x = \frac{5\pi \times 126^{\circ}52^{\circ}}{180}$$

$$= 11.0712...$$

$$= 11.1 \text{ units } (3SF)$$

$$\frac{\omega}{b} = \frac{b}{a+b}$$

$$\frac{b}{b} = \frac{b}{1+b}$$

$$b = 1+b$$

$$1+b=b^{2}$$

$$b^{2}-b-1=0$$

$$b=1\pm\sqrt{1-4\times1\times1}$$

$$=\frac{1\pm\sqrt{5}}{2}$$

take positive, ratiois

So
$$55-1$$
 or $55+1$
because $(55-1)\times(55+1)=5-1=1$ reuprocals.

OB=OC malii Let ABC = d. (at arum/erence), stands on arc. AC. ". ADC = 2 a (at centre), stands on are AC.

BCO = 2 alternate angles AB//CO

Now ADC = d+2a. (easternor angle = sum of 2 remote interior angles)
= 3d.

:- ADC = 3 × ABC

Kows, from Ato B at 4km/h. Walk's from B to C at bkm/h.

speed = <u>distance</u> (i) AB = $\sqrt{x^2+9}$

fime = distance = $\sqrt{x^2+9}$ hours (ii) I hours to reach C from A.

 $\sqrt{x^2+9} + (8.5-x) = 2$

 $3\sqrt{x^2+9} + 2(8.5-x) = 24$

 $3.\sqrt{x^2+9} + 17 - 2\alpha - 24 = 0$

 $3\sqrt{x^2+9}-2x-7=0$

 $3.\sqrt{\chi^2+9} = (2\chi+7)$

 $9\left(\chi^{2}+9\right)=\left(2\chi+7\right)^{2}$

 $9x^2 + 81 = 4x^2 + 28x + 49$

 $5x^2 - 28x + 3\lambda = 0$

 $\alpha = 28 \pm \sqrt{784 - 4 \times 5 \times 32}$

 $= 28+12 \quad \text{or} \quad 28-12 \\ 10 \quad \text{in}.$

x = 4 or 1.6. km.