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1) Given that AABCH{AFED, then £ACR = ZEDF . True or false, giving a reason.

2. »
Find the value of x in the diagram below, which has two squares
drawn on its sides.

3) As shown in the figure (which is not to scale), B, E lie on the
c sides AC, DA respectively of A4ACD.

Usg the information shown on the figure to find the value of
ACD. :

(4)  PQRS is arhombus. Find the value of x

NOT TO
SCALE

(5) Which of the following is NOT sufficient to ensure that a quadrilateral is a parallelogram?

(A) One pair of opposite sides are equal and parallel.
(B)  The diagonals are of different lengths. -

() The diagonals bisect one another.

(D) All four sides are equal.
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Find the value of m?

Q)

In which diagram is PQ NOT necessarily parallel to RS?.

(A) This diagram shows two circles (B)
centre O. PS and RQ are diameters.
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(®)

A ADE is similarto A ABC.
A ADE has an area of 16 m>.

Calculate the area of A ABC.
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(9) WXYZis aparallelogram.
WY =XY.

Find the value of x.

70°

(10) A4BCD is a paralleogram.
The area of triangle BCE is
32 cm’.

Calculate the area of ABED.
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(11)

600
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(12) ABCD is arectangle.

EDF and FCG are straight lines.
LEDA=y® and £LDFC = x°
4LBCG =?

(13) Given A4B|| CE and CE bisects £BCD

Prove AC = BC.




(14)

Consider these statements:

L Triangles LMN and PQR and congruent.
IL Triangles LMN and PQR are similar.

Which is always correct?

(A) I only (B)IIonly (C)BothIandII (D) Neither I nor II

A student uses the diagram to find the width of the river, w.

Find the value of w.

(a) Write down an equation that you could use to find
X.




(17)  Two arcs of equal radius with centres P and Q.
These arcs intersect at R and S.

Prove that RS is a perpendicular bisectoriof PQ. (ie
cuts in half at right angles)

(Hint: Join PR, OR etc and find some congruent triangles)

(18) APQR is similar to APRT where ZPQOR = / PRT

Then Q@ =
RT
) PQ PR
(A) 7T ®) 7T
PT RT
© R Gj)jﬁi?

(19)

In the diagram above 4B || ED, AN = AC, £/ NCD =32"and £ ACE = 80°.

Find £ NAB, giving reasons.




(20) PQRS is a trapezium with PQ || SR.
If 4, B and C are midpoints of SP, PR and OR respectively prove

P a
7\( :;, 5‘ that:
A B (o]

() AB|| SR

®)  BC|IPQ

(© the points 4, B and C are collinear.

In the diagram ABC is an isosceles triangle where
ZABC = £LBCA=72"and AB=AC=1.

ZABC is bisected by BD, and BC = x.

) Explain why BD = AD =x

(i)  Show that A4BC ||| ABCD

~1+4/5 i
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(i) Byusing (i) & (i)  showthat x=
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