

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

NOVEMBER 2005

HSC ASSESSMENT TASK #1

Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time 90 minutes
- Write using black or blue pen. Pencil may be used for diagrams
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 70

- All questions may be attempted
- All questions are of equal value

Examiner - R Dowdell

	Que	estion 2: (14 marks) START A NEW BOOKLET	Marks	Question 3: (14 marks) START A NEW BOO
	(a)	A point moves such that its distance from the point (1, 3) is always equal its distance from the line $x = 5$. The path that point moves on is a parabola For this parabola, determine: (i) its Cartesian equation; (ii) the focus; (iii) the directrix; (iv) the focal length; (v) the axis of symmetry.	5	 (a) (i) Write in simplest form log_a x³ - log_a xz + 2 log_a (ii) Make y the subject of log_a x - log_a y = 3 log_a (iii) Find log₆ 8, correct to 3 decimal places. (iv) If log_a 7·5 = 3·65, find the value of a, correct figures.
,	(b) (c)	 (i) Find the equation of the line which is perpendicular to 3x+2y-7 = 0 and which passes through the point (1, 2). (ii) Find the point of intersection of these two lines Sketch the region represented by x+3y≥3 and x-y<2. 	4	(b) Solve: (i) $x^6 + 7x^3 = 8$ (ii) $(x^2 + x)^2 - 14(x^2 + x) + 24 = 0$ (iii) $x^2 + 5x < 6$
	(d)	Calculate the shortest distance from (2, 3) to the line $y = 3x + 2$.	2	

Question 3: (14 marks) START A NEW BOOKLET			
(a)	 (i) Write in simplest form log_a x³ - log_a xz + 2log_a x (ii) Make y the subject of log_a x - log_a y = 3log_a(xy) (iii) Find log₆ 8, correct to 3 decimal places. (iv) If log_a 7·5 = 3·65, find the value of a, correct to 4 significant figures. 	7	
(b)	Solve: (i) $x^6 + 7x^3 = 8$ (ii) $(x^2 + x)^2 - 14(x^2 + x) + 24 = 0$ (iii) $x^2 + 5x < 6$	7 .	

Question 4: (14 marks) START A NEW BOOKLET

Marks

(a) Evaluate the discriminant of $3x^2 + 5x - 7 = 0$. Hence, or otherwise, solve the equation.

- For what value(s) of m does $3x^2 + mx + 5 = 0$ have 2 distinct, real roots?
- 2

- (c) 3 white marbles and 5 black marbles are placed in a container.
 - (i) A marble is drawn at random from the container. Its colour is noted and it is returned to the container. A second marble is then drawn and its colour noted.
 - (I) Draw a tree diagram which could be used to determine the probability of each possible event.
 - (II) Find the probability that the two marbles drawn have the same colour.
 - (ii) If the first marble drawn is not returned to the container, find the probabilty that the two marbles drawn are the same colour.
 - (iii) In a game, if a person draws 2 black marbles, he is allowed to roll a die. If the die roll yields a 6, the person wins \$10. What is the probability of winning \$10 in the game if the first marble drawn is not replaced.
- (d) Bill borrows \$10 000 (at 9%) per annum reducible interest) to set up a Home Theatre. He repays the money under the following conditions:
 - no repayment is required until 2 months after the purchase that is, no repayment is due after 1 month
 - the loan is to be repaid by making equal monthly repayments of \$M
 - the loan is to be completely repaid 24 months after the purchase date.

Calculate the size of the monthly repayment \$M.

Question 5: (14 marks) START A NEW BOOKLET

Marks

(a)

B represents a general point on the curve y = f(x).

- (i) Write down, in simplest form, the gradient of the secant AB.
- (ii) Find the gradient of the tangent to y = f(x) at A(3, 9).
- (iii) Find the equation of the tangent to y = f(x) at the point A(3, 9).
- (b) (i) Copy and complete the following table in your answer booklet (giving answers to 3 decimal places).

h	0.1	0.01	0.001
$\frac{2^h-1}{h}$			

- (ii) If $A = \lim_{h \to 0} \frac{2^h 1}{h}$, write down an approximation to A correct to 2 decimal places.
- (iii) Show, using first principles, that $\frac{d}{dx}(2^x) = A \cdot 2^x$

Question 5 continues on the next page

Question 5 (continued)

- (c) Given that $n!=1\times2\times3\times....\times(n-1)\times n$ for $n\geq1$ and that 0!=1 show that $\frac{n}{n!}=\frac{1}{(n-1)!}$
 - (ii) Consider the function

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

- (I) Is E(x) an infinite geometric series? Justify your answer.
- (II) Find an approximation for E(1) by using the first five terms of the appropriate series. Write your answer correct to 4 significant figures.
- (III) Find the derivative of $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}$
- (IV) By considering your answer to part (III), write down a simple relationship between E(x) and E'(x).
- (V) Write down an approximation to the gradient of the tangent to the curve y = E(x) at the point where x = 1. Write your answer correct to 1 decimal place.

End of Paper

November 2005

Assessment Task #1

Mathematics

Sample Solutions

Question	Marker
1	AW
2	DM
3	FN
4	AF
5	EC

Question 1

a) i)
$$d/dx(x^3+x^2)$$

= $3x^2+2x$.
ii) $d/dx(x^3+x^2)$
= $3x^2-2x$.

iii)
$$d_{x}\left(x^{3} \times x^{2}\right)$$

$$= d_{x}\left(x^{5}\right)$$

$$= 5x^{4}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

b) i).
$$T_n = a + (n-1)d$$

when $n = 5$
 $1 = a + 4d$.
 $0 = 1 - 4d - 0$
 $S_n = \frac{n}{2}(2a + (n-1)d)$
when $n = 8$
 $6 = 8a + 28d + 28d$

b) cont).

subs ① wto ②.

$$6 = 8(1-4d) + 28d$$
.

 $6 = 8 - 32d + 28d$.

 $d = \frac{1}{2}$.

 6 from ①.

 $a = 1-4d$
 $= -1$
 0 $T_{11} = a + (n-1)d$
 $= -1 + 10(\frac{1}{2})$
 $= \frac{4}{2}$

c)
$$2x^2-4x+3$$

 $= A(x-1)^2+B(x-1)+c$
 $= A(x^2-2x+1)+B(x-1)+c$
 $= Ax^2-2Ax+A+Bx-B+C$
 $= Ax^2+(B-2A)x+A-B+C$
Equating coefficients
 $A=Q$ — O
 $B-2A=-4$ — Q
 $A-B+C=3$ — Q
 $A=0$ — Q

d)
$$5x^2+3x-7$$
.
roots $\alpha \in \beta$.

$$|||) \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

$$= \frac{3}{7}.$$

(v)
$$\chi^{2} + \beta^{2} = (\chi + \beta)^{2} - 2(\chi\beta)$$

= $(-\frac{3}{5})^{2} - 2(\frac{7}{5})$

Question 3

(a) (i)
$$\log_a x^3 - \log_a xz + 2\log_a x$$
$$3\log_a x - (\log_a x + \log_a z) + 2\log_a x$$
$$4\log_a x - \log_a z$$
$$\log_a \left(\frac{x^4}{z}\right)$$

(ii)
$$\log_{a} x - \log_{a} y = 3\log_{a}(xy)$$
$$\log_{a} \left(\frac{x}{y}\right) = \log_{a} \left(xy\right)^{3}$$
$$\frac{x}{y} = x^{3}y^{3}$$
$$y^{4} = x^{-2}$$
$$y = \frac{1}{\sqrt{x}} = \frac{\sqrt{x}}{x} \left(x, y > 0\right)$$

(iii)
$$\log_6 8 = \frac{\ln 8}{\ln 6} = 1.161 \text{ (3 dec.pl.)}$$

(iv)
$$\log_a 7 \cdot 5 = 3 \cdot 65$$

 $a^{3.65} = 7.5$
 $3 \cdot 65 \ln a = \ln 7 \cdot 5$
 $\ln a = 0.552$
 $a = e^{0.552} = 1 \cdot 737 \text{ (4 sig.fig.)}$

(b) (i)
$$x^6 + 7x^3 - 8 = 0$$
 (Let $a = x^3$)
 $a^2 + 7a - 8 = 0$ ($a + 8$)($a - 1$) = 0
 $a = -8, a = 1 = x^3$
 $\therefore x = -2, x = 1$

(ii)
$$(x^2 + x)^2 - 14(x^2 + x) + 24 = 0 \quad a = (x^2 + x)$$

$$a^2 - 14a + 24 = 0$$

$$(a - 12)(a - 2) = 0$$

$$a = 12, \quad a = 2$$

$$(x^2 + x) = 12, \quad (x^2 + x) = 2$$

$$(x = 4)(x - 3) = 0, \quad (x + 2)(x - 1) = 0$$

$$x = -4, 3, -2, 1$$

(iii)
$$x^2 + 5x - 6 < 0$$

 $(x+6)(x-1) < 0$
 $\therefore -6 < x < 1$

)

2x - 8y+4=0 3x + 2y-7=0 62-9y+1220 -13y+26=0 y=2. Sub into (9) 2x-6+4=0 7/= Sub (0,0) into (Oztl. falser

Question 4

(a)
$$\Delta = b^2 - 4ac$$

= $(5)^2 - 4(3)(-7)$
= $25 + 84$
= 109

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-5 \pm \sqrt{109}}{6}$$

(b)
$$\Delta = b^2 - 4ac$$

= $m^2 - 4(3)(5)$
= $m^2 - 60$

For 2 distinct real roots $\Delta > 0$.

$$m^{2} - 60 > 0$$

$$(m - \sqrt{60})(m + \sqrt{60}) > 0$$

$$m < -\sqrt{60}, m > \sqrt{60}$$

$$m < -2\sqrt{15}, m > 2\sqrt{15}$$

(c) (i) (I)

(II) P(same colour) = P(WW) + P(BB)
=
$$\frac{3}{8} \times \frac{3}{8} + \frac{5}{8} \times \frac{5}{8}$$

= $\frac{9}{64} + \frac{25}{64}$
= $\frac{17}{32}$

 $\frac{|a_{1}+b_{1}+c_{2}|}{|a_{1}+b_{2}+c_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}|}{|a_{1}+b_{2}+c_{2}|}$ $\frac{|a_{1}+b_{2}+c_{2}+c_{2}|}{|a_{1}+c_{2}+c_{$

(ii) P(same colour) = P(WW) + P(BB)

$$= \frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{4}{7}$$

$$= \frac{6}{56} + \frac{20}{56}$$

$$= \frac{13}{28}$$
(iii) P(BB) × P(6) = $\frac{5}{8} \times \frac{4}{7} \times \frac{1}{6}$

(d) Let A_n be the amount owing after n months.

$$\therefore M(1+1.0075+...+1.0075^{22})=10000\times1.0075^{24}$$

1+1·0075+....+1·0075²² is a geometric series.

$$a = 1, r = 1·0075, n = 23$$

 $S_n = \frac{a(1-r^n)}{1-r}$

$$S_{23} = \frac{1(1 - 1 \cdot 0075^{23})}{1 - 1 \cdot 0075}$$

$$\approx 25$$

$$\therefore 25M = 10000 \times 1 \cdot 0075^{24}$$

$$M = \$478 \cdot 57$$

(a) B (iii)
$$h = \lim_{x \to 0} \frac{2^{x-1}}{R}$$
 (IX) $\frac{1}{x}(3+2,q+64+8)$ (X) $\frac{1}{x}(2x) = (\frac{f(x+R)-f(x)}{R})$ (V) $\frac{1}{x}(3,q)$. (ii) $\frac{1}{x}(3+2)$ = $\frac{f(x+R)-f(x)}{R}$ (V) $\frac{1}{x}(3+2)$ = $\frac{f(x+R)-f(x)}{R}$ (V) $\frac{1}{x}(3+2)$ = $\frac{f(x+R)-f(x)}{R}$ (V) $\frac{1}{x}(3+2)$ = $\frac{f(x+R)-f(x)}{R}$ (V) $\frac{1}{x}(3+2)$ = $\frac{f(x+R)-f(x)}{R}$ (II) $\frac{1}{x}(x+R) = \frac{f(x+R)-f(x)}{R}$ (II) $\frac{1}{x}(x+R) = \frac{f(x+R)-f(x)}{R}$ (III) $\frac{f(x+R)-f(x)}{R}$ (III) $\frac{f(x+R)-f(x)}{R}$ (III) $\frac{f(x+R)-f(x)$

E'(1) = 2.7.