

Question 1 (16 Marks)

2006

YEAR 11 HSC Task 1 Term 4

Mathematics

General Instructions

- Working time 90 Minutes
- Reading time 5 Minutes
- Write using black or blue pen
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Hand in your answer booklets in 5 sections. Section A (Question 1), Section B (Question 2), Section C (Question 3), Section D (Question 4) and Section E (Question 5).

Total Marks - 76

- Attempt Questions 1-5.
- All questions are NOT of equal value.

Examiner: A. Ward

Differentiate with respect to x and simplify: $y = x^5 - 1$ 1 (ii) $y = (3x^4 - 5)^7$ 1 2 b) Write down the third and fourth terms of the series 12+6+... if it is: (i) an arithmetic series 1 a geometric series 1 c) Find, to 2 decimal places, the roots of: $2x^2 - 3x - 4 = 0$ 2 Show that $2x^2 - 3x + 4 = 0$ has no real roots. d) Determine each of the following: $\int x^6 dx$ $\int (x-1)(x+2)dx$ 2 e) Three terms of an arithmetic series have the sum 21 and a product of 315. Find the 3 numbers. 2

SECTION A

Marks

End of Section A

SECTION B - Start a new booklet Marks Question 2. (17 marks) Given that $ab^c = d$: Find b in terms of a, c and d. Find c in terms of a, b and dCalculate b, correct to 4 significant figures, when a = 75.12, c = 1.142 and d = 61.94. **∦**b) Given that, $f(x) = a - 2x - x^2$ where a is a constant. Find: the value for a for which the roots of the equation differ by 3. 2 the set of values of a for which f(x) < 0 for all values of x. 2 2 c) At what points does the tangent to $f(x) = 2x^3 - 3x^2 + 1$, have slope 0. d) Evaluate: $\int_{1}^{2} (3x^2 - 2x) dx$ 2 For the function, $f(x) = 5x^3 - 7x^2 + 3x + 2$ e) Show that f(x) passes through the point (1,3)At this point, find: the gradient. the equation of the tangent in gradient-intercept form. the equation of the normal in general form. 2

End of Section B

	SECTION C - Start a new booklet	<u>Marks</u>		
Question 3. (15 marks)				
a)	Find the values of y which satisfy the equation:			
	$\left(8^{y}\right)^{y} \times \frac{1}{32^{y}} = 4$	2		
b)	A point P is equidistant from the x-axis and the point $F(0,2)$. Find the locus of the point P .	3		
c)	Using first principles, find the derivative of the function $f(x) = x^2 + x$, (all working must be shown).	2		
d)	Find the area bounded by $y = \sqrt{x} + 3$ and the x-axis for $1 \le x \le 4$.	2		
e)	The equation $3x^2-6x+8=0$ has roots α and β . Find an equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$	2		
f)	A wall vase has one plane face, and its volume is equivalent to that			
	generated when the area enclosed by $x = \frac{y^3}{64} + 1$, the y-axis and $y = 8$, is			
	rotated through two right angles about the y-axis, the units being			
	centimetres. Calculate its volume.	1		

End of Section C

SECTION D - Start a new booklet Marks Question 4. (12 marks) Tabulate, to 2 decimal places, the values of the function a) $f(x) = \sqrt{1 + x^2}$, at **unit** intervals from x = 2 to x = 5 inclusive. Use these values to find an estimate, by the trapezoidal rule, of the area between y = f(x) and the x-axis for $2 \le x \le 5$ to 3 decimal places.. 2 A point P has x-coordinate a which is taken to be on the line y = 3x - 9. b) 2 If Q is the point (1,4), show that $PQ^2 = 10a^2 - 80a + 170$ Find the value of a which will make PQ a minimum. 2 (iii) N is a point on the line such that QN is perpendicular to the line. Find the co-ordinates of N. 2 Find the equation of QN in general form. 2

End of Section D

		SECTION E - Start a new booklet	Marks	
<u>)ues</u>	tion 5. (16 r	narks)		
1)	Solve for:	x:		
	(i)	$\log_5 x + \log_2 8 = 0$	1	
	(ii)	$\log_3 x + 3\log_x 3 = 4$	2	
b)	Prove	that, if the sum of the radii of two circles remains constant, the sum		
	of the	areas of the circles is least when the circles are equal.	3	
c)	A priz	ze fund is set up with an investment of \$2000, to provide a prize of		
	\$150 each year. The fund accrues compound interest at 5% p.a. paid six			
	montl	nly. The first prize is awarded 1 year after the initial investment,		
	after	interest is received.		
	(i)	Find the value of the fund immediately after the first years prize is		
		drawn from the fund.	1	
	(ii)	Find the value of the fund immediately after the third prize is		
		drawn from the fund.	2	
	(iii)	Find the number of prizes of the full \$150 which can be drawn		
		from the fund.	3	
d)	Three real, distinct and non-zero numbers a, b and c are such that a, b, c			
	are in arithmetic series and a, c, b are in geometric series.			
	(i)	Find the numerical value of the common ratio of the geometric		
		series.	2	
	(ii)	Hence, find an expression in terms of a for the sum to infinity of		
		the geometric series whose first terms are a. c. b.	_	

End of Section E

End of Examination Paper

$$\frac{111}{\sqrt{t}}\int \frac{\sqrt{t+1}}{\sqrt{t}} dt = \int (1+t^{-\frac{t}{2}}) dt$$

$$= t + \frac{t}{(\frac{t}{2})} + C$$

$$= t + 2\sqrt{t} + C$$

e) let the three terms be a-d, a, a+d $(a-d)+(a)+(a+d)=21 \qquad (a-d)(a)(a)$

(a-d)(a)(a+d) = 315 $a(a^{2}-d^{2}) = 315$ sub in a = 7 $7(49-d^{2}) = 315$ $49-d^{2} = 45$ $-d^{2} = 4$ $d^{2} = 4$

 $d = \pm 2$

:. the three terms are 5,7 \$ 9.

(a) (1)
$$ab^{c}=d$$
 (11) $b^{c}=\frac{d}{a}$

$$\begin{vmatrix} b^{c}=d \\ a \end{vmatrix} = \begin{vmatrix} b = (\frac{d}{a})^{\frac{1}{2}} \end{vmatrix} \text{ or } \sqrt[6]{d/a}.$$

(III)
$$b = \frac{61.94}{75.12}$$

$$\frac{1}{10.8446} (4.5.76)$$

(b) (1) Let the rosts he 2, 2-3.

$$\lambda = \frac{1}{2}$$
 $\lambda = \frac{1}{2}$
 $\lambda = \frac{1}{2}$

Men
$$S_2 = \frac{c}{a} = -a$$

$$\vdots \quad a = -\left(\frac{d}{a} \times \frac{-5}{a}\right)$$

$$1 = \frac{5}{4}$$

(") If f(x)<0 the gnadratic would be regative definite.

· 40

$$ie (-2)^{2} - 4x = 1 \times a \times 0$$
 $4 + 4a \times 0$
 $4a \times -4$
 $|a \times -1|$

(c)
$$f(x) = 6x^{2} - 6x$$
.

Let $f(x) = 0$
 $6x(x-1) = 0$
 $x = 0,1$ | Points are $(0,1)$ and $(0,0)$ |

NOTES of $x = 0$
 $f(0) = 0 - 0 + 1 = 1$
 $f(0) = 2 - 3 + 1 = 0$.

(d) $\int_{-1}^{2} (3x^{2} - 2x) dx = \left[x^{2} - x^{2}\right]_{-1}^{2}$
 $= (8 - 4) - (1 - 1)$
 $= 4 - 2$ (NB answer = 6. is set but)

(e) (i) $f(1) = 5 - 7 + 3 + 2 = 3$.

... $(1,3)$ has on $f(x) = 5x^{3} - 7x^{2} + 3x + 2$.

(ii) $f(x) = 5x^{2} - 7x^{2} + 3x + 2$.

 $f(x) = 15x^{2} - 14x + 3$
 $f(x) = 15x^{2} - 14x + 3$
 $f(x) = 15x - 14x +$

in yearal Form

in y=moc+b form.

Question 3 (15 Marks)

(a) Find the values of y which satisfy the equation:

 $(8^y)^y \times \frac{1}{32^y} = 4$

 $2^{3y^2} \times 2^{-5y} = 2^2,$ Solution: $3y^2 - 5y - 2 = 0,$ (3y+1)(y-2) = 0, $\therefore y = 2, -\frac{1}{3}.$

3 (b) A point P is equidistant from the x-axis and the point F(0,2). Find the locus of the point P.

2

2

(c) Using first principles, find the derivative of the function $f(x) = x^2 + x$ (all working must be shown).

Solution:
$$f'(x) = \lim_{h \to 0} \left\{ \frac{(x+h)^2 + (x+h) - x^2 - x}{h} \right\},$$

$$= \lim_{h \to 0} \left\{ \frac{x^2 + 2xh + h^2 + x + h_x^2 - x}{h} \right\},$$

$$= \lim_{h \to 0} \left\{ \frac{2xh + h^2 + h}{h} \right\},$$

$$= \lim_{h \to 0} \{2x + h + 1\},$$

$$= 2x + 1.$$

(d) Find the area bounded by $y = \sqrt{x} + 3$ and the x-axis for $1 \le x \le 4$.

2

2

(e) The equation $3x^2-6x+8=0$ has roots α and β . Find an equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Solution:
$$\alpha + \beta = 2$$
, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$, $\alpha \beta = \frac{8}{3}$. $= \frac{3}{4}$, $\frac{1}{\alpha \beta} = \frac{3}{8}$. \therefore New equation: $x^2 - \frac{3x}{4} + \frac{3}{8} = 0$, $i.e.$ $8x^2 - 6x + 3 = 0$.

Solution: When
$$x = 0$$
, $y = -4$.
$$V = \frac{1}{2}\pi \int_{-4}^{8} x^{2} dy,$$

$$= \frac{\pi}{2} \int_{-4}^{8} \left(\frac{y^{6}}{4096} + \frac{y^{3}}{32} + 1 \right) dy,$$

$$= \frac{\pi}{2} \left[\frac{y^{7}}{7 \times 4096} + \frac{y^{4}}{4 \times 32} + y \right]_{-4}^{8},$$

$$= \frac{\pi}{2} \left\{ \frac{512}{7} + 32 + 8 - \left(-\frac{4}{7} + 2 - 4 \right) \right\},$$

$$= \frac{405\pi}{7},$$

$$\approx 181.76 \text{ cm}^{3} (2 \text{ dec. pl.})$$

QUESTION 4

$$A = \frac{h}{2} \left\{ f(2) + f(5) + 2 \left[f(3) + f(4) \right] \right\}$$

$$h = \frac{b-a}{n} = \frac{5-2}{3} = 1$$

$$A = \frac{1}{2} \left[2.24 + 5.10 + 2 \left(3.16 + 4.12 \right) \right]$$

$$= 10.950 \quad (3 dp.)$$

b (i)
$$P(a, 3a-9) \qquad Q(1,4)$$

$$PQ^{2} = \sqrt{(a-1)^{2} + (3a-9-4)^{2}}$$

$$PQ^{2} = .a^{2} - 2a+1 + 9a^{2} - 78a + 169$$

$$PQ^{2} = 10a^{2} - 80a + 170$$

(11)
$$(PQ^2)' = 20a - 80$$

turn pt. $20a = 80$, $a = 4$
 $(PQ^2)'' = 20$
 $(PQ^2)'' = 70$
i. min value of $PQ = 4$

(iv)
$$y-3=-\frac{1}{3}(\chi-4)$$

 $39-9=-\chi+4$
 $\chi+3y-13=0$

$$\log_{5} x + \log_{2} 8 = 0$$

$$\log_{5} x = -3$$

$$x = 5^{-3} = \frac{1}{125}$$

(ii)
$$\log_3 x + \frac{\log_3 27}{\log_3 x} = 4$$

 $(\log_3)^2 - 4 \log_3 x + 3 = 0$
 $\log_3 x = 3$ or $\log_3 x = 1$
 $x = 27$ or $x = 3$

b))
$$r_1 + r_2 = k$$
 $S = \pi r_1^2 + \pi r_2^2$
 $= \pi (r_1^2 + r_2^2)^{4k}$
 $= \pi [r_1^2 + (k-r_1)^2]$
 $S = \pi [2r_1^2 - 2kr_1 + k^2]$
 $\frac{dS}{dr_1} = \pi [4r_1 - 2k] = 0$
 $\Rightarrow r_1 = k_2$
 $\therefore r_2 = k_2$ from **

 $\frac{d^2S}{dr_2^2} = 4\pi > 0$ MIN.

$$(i) V_1 = 2000(1.025)^2 - 150$$

$$V_2 = \left[2000(1.025)^2 - 150\right](1.025)^2 - 150$$

$$V_3 = \left\{2000(1.025)^4 - 150\left[1 + 1.025^2\right]\right\} \left\{1025^2 - 150\right\}$$

$$V_3 = \left\{2000(1.025)^4 - 150\left[1 + 1.025^2\right]\right\} \left\{1025^2 - 150\right\}$$

$$V_3 = 2000(1.025)^4 - 150\left[1 + 1.025^2 + 1.025^4\right]$$

$$V_{N} = 2000(1.025)^{2N} - 150[1+1.025+1.025+]$$

$$lost V_{N} = 0$$

$$\frac{2000(1.025)^{2N}}{150} = \frac{1(1.025^{2})^{N} - 1}{0.050625}$$

$$0.675(1.025)^{2N} = 1.025^{2N} - 1$$

$$1 = [1.025^{2N}].(0.325)$$

$$N = -\frac{1}{2}.\frac{\log (0.325)}{\log (1.025)}.22$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

(i)
$$a,b,c$$
 $A.s.$ a,c,b $G.s.$

$$\Rightarrow b-a=c-b.$$

$$b = \frac{a+c}{2}$$

$$c^{2} = ab$$

$$c^{2} = a\left(\frac{a+c}{2}\right)$$

$$2c^{2} = a^{2} + ac$$

$$2c^{2} - ac - a^{2} = 0$$

$$2\left(\frac{c}{a}\right)^{2} - \left(\frac{c}{a}\right) - 1 = 0$$

$$c = \frac{1 \pm \sqrt{1-4(2x)}}{4}$$

However only $-\frac{1}{2}$ applies $r = -\frac{1}{2}$

$$S = \frac{a}{1-r}$$

$$= \frac{a}{1-(-\frac{1}{2})}$$

$$S = \frac{2}{3}a$$