

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics Extension

General Instructions

- Working time 90 minutes.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Only Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Start each section in a **SEPARATE** answer booklet.
- Marks may not be awarded for messy or badly arranged work

Total Marks -82

- Attempt Sections A D
- All sections are **NOT** of equal value.

Examiner: C. Kourtesis

SECTION A [20 marks]

1.	Convert	(a)	$\frac{5\pi}{2}$ radians to degrees	1	
		(b)	135° to radians	1	
2.	The point $(9, k)$ lies on the line $x + 3y = 6$ Find the value of k				
3.	If $m(x) = 3^x + 3$	-3 ^{-x} fine	d m(-3)	1	
4.	Solve the inequalities				
	(a)	-4 <i>x</i> +	1≤12 <i>x</i>	2	
	(b)	x < 4		1	
5.	Find the poin	t of inte	rsection of the straight lines		
	x+2	<i>y</i> = 6	and $x-3y=10$	2	
6.	On separate diagrams sketch the graphs of:				
	(a)	xy = 4	1	1	
	(b)	xy = 4 $y = 2$	- x	1	
	(c)	y = 10	$\log_{10} x$	1	
7.	Find the root	ts of the	equation $\theta^2 - \theta - 2 = 0$	2	
8.	Sketch the re	egion in	the number plane indicated by $y \ge x^2$	2	

1 2

The equation of a parabola is given by $x^2 = 8y$ Find the (a) equation of the directrix (b) coordinates of the focus

(a) (b)

9.

SECTION B (Start a NEW Booklet) [18 marks]

- 10. Explain why $f(x) = \sin x$ represents an odd function 2
- 11. For the function $f(x) = \frac{1}{(x+1)(1-3x)}$ write down the
 - (a) equations of the vertical asymptotes 2
 - (b) y intercept 1
- 12. The equation of a circle is given by

$$x^2 + v^2 + 4x - 8y = 0$$

Find the (a) coordinates of the centre

- (b) length of the radius
- 13. Find the acute angle between the lines, answer to the nearest minute.

$$y = 2x - 1$$
 and $y = -\frac{1}{3}x$

14. Given the quadratic equation $2x^2 - mx + 8 = 0$

15. Find the coordinates of the point that divides the interval joining A(1,4) and B(5,10) externally in the ratio 3:2

SECTION C (Start a NEW Booklet) [23 marks]

- 16. Solve the inequalities
 - (a) (x+4)(x-2)(x-3) > 0(b) $\frac{x-3}{1-x} > 2$
- Find the equation of the locus of a point P(x, y) which moves so that its distance from x-y+2=0 is equal to its distance from the point (1,-1)
- (18.) Solve the inequality $\frac{1}{|4-3x|} < 4$
- 19. (a) Write down the algebraic definition of |x|
 - (b) Sketch the graph of y = x|x|
- 20. Find the value(s) of k if the equation

$$x^2 - 3kx + (k+3) = 0$$

has:

- (a) one root that is double the other
- (b) one root that is the reciprocal of the other 2
- (21). Solve the equation

$$1 - \cos x - 2\sin^2 x = 0$$
 for $0 \le x \le 2\pi$

SECTION D (Start a NEW Booklet) [21 marks]

22. Solve
$$x^6 - 7x^3 - 8 = 0$$

23. Solve the inequality
$$(x+\frac{1}{x})^2 - (x+\frac{1}{x}) \le 6$$

24. Prove that

$$\frac{\sin 2\theta + \sin \theta}{\cos 2\theta + \cos \theta + 1} = \tan \theta$$

25. (a) Show that
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

(b) Hence show that

$$\tan 15^\circ = 2 - \sqrt{3}$$

- A man travelling along a straight flat road passes three points at intervals of 200m. From those points he observes the angle of elevation of the top of a hill to the left of the road to be respectively 30°, 45° and again 45°.
 - (a) Draw a neat diagram to represent this information 1
 - (b) Find the height of the hill

THIS IS THE END OF THE EXAMINATION

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics

Sample Solutions

Section	Marker		
A	Mr Fuller		
В	Mr Dowdell Mr Boros		
C			
D	Ms Nesbitt		
F.	Ms Opferkuch		

 $x = \frac{g}{x}$

(B) 2 9 13 3	•
() () () ()	
1 125	
= 4x 3 + 5	
2 5	
	, ,
- = 5 + =	
)	
2 3	
(
(c) (1) tam 60 = 53	······································
1/7-	
(ii) cos = cos =	
6	
= \(\bar{3} \)	
7	
	5
	2
	φ.
	•
	-
	7.3

~very.	

and 4x - 2y + 7 = 0 2y = 4x + 7 1 $y = 2x + 3\frac{\pi}{2}$ $(c) \left| 5 - 2x \right| = 3$ Use (0,0) on 4x-2y+7=0 5-12=3 5-12=-3 -2x=-2 -2x=-8 $= \frac{7}{\sqrt{20}} = \frac{1}{2\sqrt{5}} \text{ or } (-1.56)$ x = 4 $\frac{7}{215} \cdot \frac{15}{15} = \frac{715}{10} \text{ units } 2$ b) (i) 5x2 - 9xy - 2y $= (5x + y)(x - 2y) \quad \textcircled{1}$ (ii) $x^2 + 4x + 4 = y^2$ $= (x+2)^2 - y$ $^{2}(x+2-y)(x+2+y)$ ②

2 unit

2761	22-24=7 (1)	Q8@)	least value at centre axis
	6x+8y=35 (2)		· x = -b
	8x-8y=-28 (1x4		7C= 2
			least value = 6
	$14x = 7$ $x = \frac{1}{2}$		OT
	2x 1/2 - 2y = -7 (1)	-	8^2 -4x+10 = $(2C-2)^2$ +6
	-2y = -8		vertex (2,6)
	y=4 x= = 3		least value = 6 when x=2 0
	3		
<u>(b)</u>	. ?	(b)	No real poot when Deo
	~ V		b2-4ac < 0
			2²-4×3×k <0
			-12k <-4
	0,0 92		K 23 6
	Domain: >C≤9		3 23
	Range: YZO 2	(0)	There a do 180-80-22
***************************************		1(<u>c</u>	Third angle = 180-80-32 = 68°
			- 68
67	$f(-x) = 4^{-x} + 4^{x} = f(x)$	1	2/ 15
	2		2 15 5in 68 Sin 80
	: f(x) is an even function	 	*
	A(1) Is an even function	-	26 = 15 Sin 63
			- Sin 80
		<u> </u>	x = 14,12 (2dp) 3
		<u> </u>	
		-	
		<u> </u>	

***************************************		<u> </u>	
	, , , , , , , , , , , , , , , , , , ,		
	<u> </u>		

(3 &1
$$\times (x-4) = 5$$

$$x^{2}-4x-5=0$$

$$(x-5)(x+1)=0$$

$$x=5 \text{ or } x=-1$$

(b)
$$\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+2}{\sqrt{3}+2}$$

$$= \frac{\sqrt{3}+2}{3-4}$$

$$= -(\sqrt{3}+2)$$
(3)

(c)
$$\sqrt{2} = \sqrt{56} - \sqrt{15}$$

= $5\sqrt{2} - 3\sqrt{2}$
= $2\sqrt{2}$

$$4 (a) \sqrt{(a-4)(a+4)+16}$$

$$= \sqrt{a^2-16+16}$$

$$= \sqrt{a^3}$$

$$= a \qquad (as a > 0) (2)$$

$$\frac{16}{8} = \frac{16^{2} + 10^{2} - 10^{2} - 10^{2} + 10^{2} - 10^{2}$$

Question 9

(a)
$$M: x = \frac{4+0}{2}, y = \frac{2+0}{2}$$
 (1) $= 2 = 1$

∴ M (2,1)

(b)
$$m_{AB} = \frac{0-2}{4-0}$$
 (1) $= -\frac{1}{2}$ $\therefore m_{AB} = -\frac{1}{2}$

(c)
$$m_1 \times m_2 = -1$$
 (1) $-\frac{1}{2} \times m_2 = -1$ $m_2 = 2$

Using
$$y-y_1 = (m(x-x_1))$$
, where $x = 2$, $y = 1$, $m_2 = 2$
 $y-1 = 2(x-2)$
 $\therefore 2x-y-3 = 0$

(d) Using
$$2x-y-3=0$$
, where $x=5, y=7$ (1) $2\times 5-7-3=0$ $\therefore LHS=RHS$

(e) In
$$\triangle ABC$$
 (2)
$$d_{AC} = d_{BC} = \sqrt{50}$$

$$d_{AB} = \sqrt{20}$$
 $\therefore \triangle ABC$ is isosceles

Question 10

(b) (i) In
$$\triangle CLM$$
 (1) $\angle CLM = x^0$ (data) $\angle CML = x^0$ (base \angle , isos. \triangle) $\therefore \angle ACB = 180 - 2x \ (\angle \text{ sum of } \triangle)$

In
$$\triangle ABC$$

 $\angle ACB = \angle ABC$ (data)
 $\therefore \angle ABC = 180 - 2x$

(ii) In
$$\triangle MBN$$
 (2)
 $\angle BMN = \angle CML$ (vert. opp. $\angle s$)
 $= x^0$
 $\angle MBN = 180 - \angle ABC$ (supp. $\angle s$)
 $= 180 - (180 - 2x)$
 $= 2x$

∴
$$\angle TNL = \angle BMN + \angle MBN$$
 (ext. $\angle = \text{sum of two opp. int. } \angle s$)
= $x + 2x$
= $3x$

i

.