

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004
YEAR 11 HALF-YEARLY EXAMINATION

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time One and a half hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.

Total Marks - 🕸 😂

- Attempt all questions.
- All questions are of equal value.
- Each section is to be answered in a separate booklet, labeled Section A (Questions 1, 2), Section B (Questions 3, 4) and so on.

Examiner: A.M.Gainford

Note:

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

α			
Se	cti	on	А

Marks

6

- Simplify x(x-y)-y(y-x). (a)
 - Evaluate $\sqrt{\frac{3^2 + 12^2}{231 12^2}}$ correct to three significant figures. (b)
 - Express in simplest reduced form: $\left(\frac{2}{5}\right)^{10} \times \left(\frac{15}{4}\right)^{10} \times \left(\frac{2}{3}\right)^{9}$ (c)

Question 2

Question 1

6

- Express $0.\dot{7}\dot{2}$ as a common fraction in lowest terms. (a)
- Simplify $2\sqrt{\frac{9}{4}} + \sqrt[3]{\frac{8}{125}}$ completely. (b)
- (c) State the value of the following, in exact terms:
 - $\tan 60^{\circ}$ (i)
 - (ii) $\cos \frac{11\pi}{6}$

Section B

(Start a new booklet)

Question 3

- Solve for x: x(x-4) = 5(a)
- Express $\frac{1}{\sqrt{3}-2}$ with rational denominator. (b)
- Find the value of x if $\sqrt{x} = \sqrt{50} \sqrt{18}$. (c)

Question 4

6

(a) Expand and simplify:

$$\sqrt{(a-4)(a+4)+16}, \quad a>0.$$

- (b) Three legs of a triangular sailing course have lengths 8 km, 10 km, and 16 km.
 - (i) Draw a sketch showing this information.
 - (ii) Calculate the size of the smallest angle, correct to the nearest minute.
- (c) On a number line sketch the solution of $4-x \ge 3$.

Section C

(Start a new booklet.)

Question 5

6

(a) In the diagram $AD \parallel BC$.

Copy the diagram onto your worksheet and find the value of x, giving reasons.

(b) Sketch the graph of $y = 2\sin(90^{\circ} - x)$ in the domain $-90^{\circ} \le x \le 360^{\circ}$.

Question 6

- (a) Find the shortest distance between the parallel lines y = 2x and 4x 2y + 7 = 0.
- (b) Factorise completely each of the following:
 - (i) $5x^2 9xy 2y^2$
 - (ii) $x^2 + 4x + 4 y^2$
- (c) Solve |5-2x|=3.

Section D

(Start a new booklet.)

Question 7

6

(a) Solve the following system of simultaneous equations:

$$2(x-y) = -7$$

$$6x + 8y = 35$$

(b) Draw a neat sketch of the graph of the function $y = \sqrt{9-x}$.

State the domain and range of this function.

(c) Show that $f(x) = \frac{4^x + 4^{-x}}{2}$ is an even function.

Question 8

- (a) Find the least value of the quadratic expression $x^2 4x + 10$, and state the x-value at which it occurs.
- (b) Find the values of k for which the quadratic equation $3x^2 + 2x + k = 0$ has no real roots.
- (c) Find the value of x correct to two decimal places.

Section E (Start a new booklet.)

Question 9

The diagram shows the points A(0, 2), B(4, 0), and C(5, 7).

Copy the diagram onto your work sheet.

- (a) Find the co-ordinates of M, the mid-point of AB.
- (b) Show that the gradient of AB is $-\frac{1}{2}$.
- (c) Find the equation of the perpendicular bisector of AB.
- (d) Show that the perpendicular bisector of AB passes through C.
- (e) What type of triangle is ABC? (Give a reason for your answer.)

(a) Sketch on the number plane the region in which all three of the following inequalities are satisfied:

$$x-y+2>0$$
$$2x+y \ge -2$$
$$x-3 \le 0$$

(b)

In the diagram ABC is an isosceles triangle with $\angle ABC = \angle ACB$. The line LMN is drawn as shown so that CL=CM, and $\angle CLM = x^0$.

Copy or trace the diagram to your booklet.

- (i) Show that $\angle ABC = (180 2x)^0$.
- (ii) Hence show that $\angle TNL = 3x^0$.

This is the end of the paper.

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics

Sample Solutions

Section	Marker	
A	Mr Fuller	
В	Mr Dowdell	_
C	Mr Boros	_
D	Ms Nesbitt	
E	Ms Opferkuch	_

· · ·	•
(b) 2 9 +3 8	
14 1725	
	1 - 2 3
$\frac{-2 \times 3}{2} + \frac{2}{5}$,
2 5	<i>-</i>
	, t
= 3+ =	
3	
J)	
(-) (-) (-)	æ,
(c) (i) tam 60 = 53	1
Cil costt = Cost	
$\begin{array}{c} \text{(ii)} & \cos \frac{11}{6} = \cos \frac{\pi}{6} \end{array}$	
= \(\frac{1}{3} \)	
= 1>	***************************************
2	
	, m
	74
	*
5	<u> </u>
	······································

	······································
	*

Q3 &1
$$\chi(x-4) = 5$$

$$\chi^2 - 4x - 5 = 0$$

$$(x-5)(x+1) = 0$$

$$\chi = 5 \text{ or } x = -1$$
Q

(b)
$$\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+2}{\sqrt{3}+2}$$

$$= \frac{\sqrt{3}+2}{3-4}$$

$$= -(\sqrt{3}+2)$$
(2)

(c)
$$\sqrt{x} = \sqrt{50} - \sqrt{15}$$

= $5\sqrt{2} - 3\sqrt{2}$
= $2\sqrt{2}$

$$4 (a) \sqrt{(a-4)(a+4)+16}$$

$$= \sqrt{a^2-16+16}$$

$$= a \qquad (as a > 0) \qquad (2)$$

$$\frac{16}{8} = \frac{16^{2} + 10^{2}}{2 \times 16 \times 10^{2}}$$

$$= \frac{292}{320}$$

$$= \frac{73}{16}$$

$$ABC = 180 - 121 = 59$$
 cointerior angles
 $ABC = FBE = 59$ vert. opp
 $BFE = 180 - (59 + 42)$
 $= 79$
 $x = BFE = 79$ vert. opp (2)

and 1 4x-24+7=0 $(c) \left| 5 - 2\alpha \right| = 3$ Use (0,0) on 4x-2y+7=0 5-2x=3 5-2x=-3 -2x = -8 $= \frac{7}{\sqrt{20}} = \frac{1}{2\sqrt{5}} \text{ or } (\pm 1.56)$ x= | x = 4 $\frac{7}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{7\sqrt{5}}{10} \quad units \quad 2$ (b) (i) 5x2-9xy-2y $= (5x + y)(x - 2y) \quad (1)$ (ii) $x^2 + 4x + 4 = y^2$ $= (x+2)^2 - y$ $^{3}(x+2-y)(x+2+y)$ ②

2 unit

Z WILL	
$\frac{2761}{6x+8y} = 35 (2)$ $8x-8y = -28 (1)x+4$ $14x = 7$ $x = \frac{1}{2}$ $2x = \frac{1}{2} - 2y = -7 (1)$ $-2y = -8$ $y = 4 x = \frac{1}{2}$	Q8(a) least value at centre axis $x = -b$ $x = -b$ $x = 2$ $least value = 6$ or $x^{2}-4x+10 = (2x-2)^{2}+6$ $vertex (2,6)$ $least value = 6 when x = 2 ①$
(b) Op Pomain: $2C \le 9$ Range: $y \ge 0$ (c) $f(x) = 4^{-x} + 4^x = f(x)$ 2 $f(x)$ is an even function (1)	(b) No real poot when D=0 b²-4ac = 0 2²-4x3xk < 0 -12k < -4 k > 3 (c) Third angle = 180-80-32 = 68° 2c = 15 Sin 68 Sin 80 2c = 15 Sin 68 Sin 80
	x = 14.12 (2dp) 3

Year 11 Mathematics (Advanced) Half Yearly Examination 2004 Solutions

Question 9

(a)
$$M: x = \frac{4+0}{2}, y = \frac{2+0}{2}$$
 (1) $= 2 = 1$

∴ M(2,1)

(b)
$$m_{AB} = \frac{0-2}{4-0}$$
 (1) $= -\frac{1}{2}$ $\therefore m_{AB} = -\frac{1}{2}$

(c)
$$m_1 \times m_2 = -1$$
 (1) $-\frac{1}{2} \times m_2 = -1$ $m_2 = 2$

Using
$$y-y_1 = m(x-x_1)$$
, where $x = 2, y = 1, m_2 = 2$
 $y-1 = 2(x-2)$
 $\therefore 2x-y-3=0$

(d) Using
$$2x-y-3=0$$
, where $x=5, y=7$ (1) $2\times 5-7-3=0$ $\therefore LHS = RHS$

(e) In
$$\triangle ABC$$
 (2)
$$d_{AC} = d_{BC} = \sqrt{50}$$

$$d_{AB} = \sqrt{20}$$

$$\therefore \triangle ABC \text{ is isosceles}$$

Question 10

(b) (i) In
$$\triangle CLM$$
 (1)
$$\angle CLM = x^{0} \text{ (data)}$$

$$\angle CML = x^{0} \text{ (base } \angle, \text{ isos. } \Delta)$$

$$\therefore \angle ACB = 180 - 2x \text{ (}\angle \text{ sum of } \Delta)$$
In $\triangle ABC$

=180-(180-2x)

=2x

 $\angle ACB = \angle ABC$ (data)

∴
$$\angle ABC = 180 - 2x$$

In $\triangle MBN$ (2)
 $\angle BMN = \angle CML$ (vert. opp. $\angle s$)
 $= x^0$
 $\angle MBN = 180 - \angle ABC$ (supp. $\angle s$)

∴
$$\angle TNL = \angle BMN + \angle MBN$$
 (ext. $\angle = \text{sum of two opp. int. } \angle s$)
= $x + 2x$
= $3x$

