

YEAR 11

HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK # 1

Mathematics Extension 1

General Instructions

- Working time 90 minutes.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work

Total Marks -81

- Attempt all questions.
- All questions are **NOT** of equal value.

Examiner:

C. Kourtesis

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Question 1 (15 marks)

Marks

Simplify $\frac{1}{5!} + \frac{1}{6!}$ (a)

1

In how many ways can a committee of 6 be chosen from a group of (b) 10 people?

2

Write down the general solution of (c)

2

$$\cos\theta = \frac{1}{2}$$

If α, β and γ are the roots of the cubic equation (d) $2x^3 + 12x^2 - 6x + 1 = 0$ find the value of:

4

(i)
$$\alpha + \beta + \gamma$$

- (ii)
- $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ (iii)

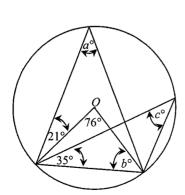
$$y = x^2 - 6x + 7$$

Find the

- focal length (i)
- coordinates of the vertex (ii)

3

(f)



Find the values of a, b and c. [There is no need to give reasons]

O is the centre of the circle

Question 2 [15 marks]

Marks

(a) The polynomial $P(x) = x^3 - 6x^2 + \theta x - 4$ has x = 1 as a zero.

5

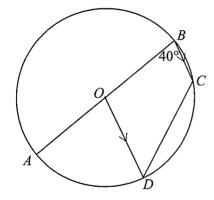
Find the:

- (i) value of θ
- (ii) other zeros of P(x)
- (iii) values of x for which P(x) < 0
- (b) The parametric coordinates of P, a point on a curve are given by $P(8t, 2t^2)$ where t is the parameter

Find:

- (i) the Cartesian equation of the curve
- (ii) the gradient of the tangent to the curve at the point where t = 3

(c)



AB is the diameter of a circle centre O.

BC and OD are parallel and $\angle OBC = 40^{\circ}$. Find the size of $\angle OCD$ giving reasons

(d) Prove by Mathematical Induction that

$$1+3+5+7+.....+(2n-1)=n^2$$

for positive integers n

4

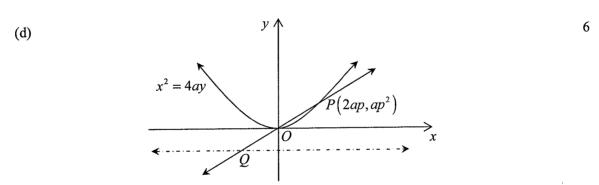
3

6

- (a) T is the point (1,-2) and the tangents from T to the parabola $x^2 = 12y$ touch the parabola at A and B. Write down the equation of the line AB
- (b) In how many ways can 5 different books be placed in a row so that two specified books:
 - (i) occupy the end positions
 - (ii) must always be together?
- (c) (i) Write down the expansion of $sin(x-\theta)$
 - (ii) If $\sin x \cos x = A \sin(x \theta)$ where A > 0 and $0 < \theta < \frac{\pi}{2}$, show that $A = \sqrt{2}$ and $\theta = \frac{\pi}{4}$
 - (iii) Hence or otherwise solve the equation for all values of x.

$$\sin x - \cos x = 1$$

(iv) Find the maximum value of $\sin x - \cos x$



The diagram shows the parabola $x^2 = 4ay$. PO is produced to meet the directrix at Q.

- (i) Show that the equation of the tangent at P has equation $y px + ap^2 = 0$
- (ii) Find the coordinates of the point Q.
- (iii) Prove that QS is parallel to the tangent at P. [S is the focus]

- (a) 17 people sit at a round table. In how many ways can they be seated if:
- 4

- (i) there are no restrictions
- (ii) two particular people cannot sit together
- (b) If $t = \tan \frac{\theta}{2}$ express in terms of t

$$\cos\theta + \sin^2\left(\frac{\theta}{2}\right)$$

(c) When a polynomial P(x) is divided by $x^2 - 3x + 2$ the remainder is 4x - 7. Find the remainder when P(x) is divided by (x-1).

2

(d) A polynomial P(x) has the following properties:

4

- (i) P(x) is odd and has a factor of $(x-5)^2$.
- (ii) The curve of y = P(x) passes through (1,1152).

Find the polynomial, P(x) of least degree that satisfies the above, expressing your answer in factorized form.

(e) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are points on the parabola $x^2 = 4ay$ with parameters p and q respectively.

5

- (i) Find the coordinates of M the midpoint of PQ.
- (ii) If PQ subtends a right angle at the vertex show that pq + 4 = 0.
- (iii) Find the locus of M.

(a) How many arrangements are there of the letters in the word

2

ANDAMOOKA

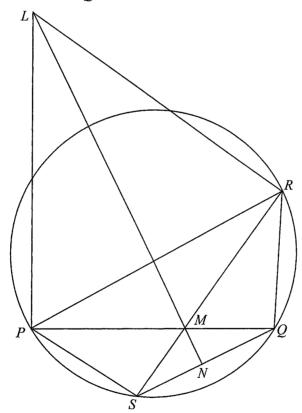
- (b) From the letters of the word PROBLEMS how many different words consisting of 5 letters are possible if they include P, do not begin with P and the letter M is to be excluded?
- 3

(c) Prove by Mathematical Induction that

4

6

- $\sin(n\pi + \theta) = (-1)^n \sin \theta$ for $0 < \theta < \frac{\pi}{2}$ for positive integers n
- (d) PQ and RS are two chords of a circle which intersect at M inside the circle. MN is the perpendicular from M to SQ. L is the point on NM produced such that LP is perpendicular to PQ



- (i) Copy the diagram
- (ii) Show that $\triangle PML \parallel \triangle NMQ$
- (iii) Hence show that $LR \perp RS$

End of paper

YEAR 11

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 1

Mathematics Extension 1

Sample Solutions

Question	Marker
1	Mr Kidd
2	Mr Choy
3	Mr Parker
4	Mr Dunne
5	Mr Bigelow

Ouestion 1

$$\frac{61}{3}(0)\frac{1}{5!} + \frac{1}{6!} = \frac{6}{6!} + \frac{1}{6!} = \frac{7}{6!} \text{ or } \frac{7}{726}$$

(d)(i)
$$x+\beta+8=-\frac{5}{a}=-\frac{12}{2}=-6$$

(ii) $x+\beta=-\frac{1}{a}$

(e)
$$y = n^2 - 6x + 7$$

$$ie \ n^{2} - 6x + 9 = y - 7 + 9$$

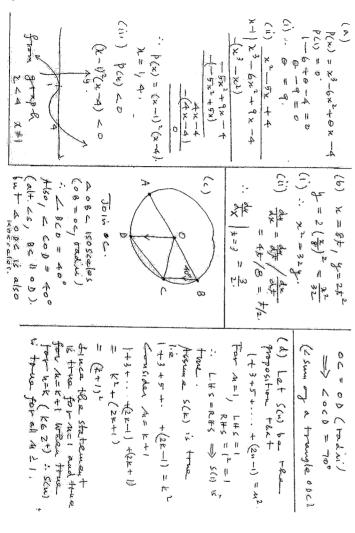
$$(x-3)^{2} = y+2$$

$$(x-3)^{2} = 4x + (y+2)$$

$$\frac{3}{3}(a) \frac{1}{5!} + \frac{1}{6!} = \frac{6}{6!} + \frac{1}{6!} \\
= \frac{7}{6!} a (\frac{7}{720}) \\
(b) {}^{10}C_{6} = 240 \\
(c) \Theta = 2NN' \pm \frac{17}{3} 24369^{\circ}n \pm 60^{\circ}$$

$$(f) a = \frac{76}{2} = 38^{\circ} \\
b = \frac{180 - 76}{2} \\
= 52^{\circ} \\
c = Q = 38^{\circ}.$$

Question 2



Question 3

(a) Chord of contact $xx_0 = 2a(y + y_0)$ $x^2 = 12y \Rightarrow a = 3$ $T\left(\frac{1}{x_0}, \frac{2}{y_0}\right)$

$$\begin{cases} \begin{pmatrix} \overline{y} & \overline{y} \\ x_0 & y_0 \end{pmatrix} \\ \therefore x \times 1 = 2 \times 3(y - 2) \Rightarrow x = 6(y - 2) \\ \therefore x - 6y + 12 = 0 \end{cases}$$

Place the two books at either end, so there are 3! ways of arranging the books in between. The end books can then be switched. Total = $3! \times 2 = 12$

Place the two books together, so there are 4 objects to arrange in 4! Ways. Then the books can be switched. Total = $4! \times 2 = 48$

(c) (i)
$$\sin(x-\theta) = \sin x \cos \theta - \cos x \sin \theta$$

$$\sin x - \cos x = A \sin (x - \theta)$$

$$= (A \cos \theta) \sin x - (A \sin \theta) \cos x$$

$$\therefore A \cos \theta = 1, A \sin \theta = 1$$

$$\therefore A = \sqrt{1^2 + 1^2} = \sqrt{2} \quad (\because A > 0)$$

$$\tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4} \quad (\because 0 < \theta < \frac{\pi}{2})$$

(iii)
$$\sin x - \cos x = 1 \Rightarrow \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 1$$

$$\therefore \sin \left(x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$\therefore x - \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4}$$

$$\therefore x = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{4} = n\pi + \frac{\pi}{4} \left(1 + (-1)^n \right)$$

$$x = \begin{cases} n\pi & n \text{ odd} \\ n\pi + \frac{\pi}{2} & n \text{ even} \end{cases}$$

Alternatively:

$$\sin\left(x - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4} - x\right) = \cos\left(x - \frac{3\pi}{4}\right)$$

$$\therefore x - \frac{3\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$

$$\cos\theta = c \Rightarrow \theta = 2n\pi \pm \cos^{-1}c$$

$$x = 2n\pi + \pi, 2n\pi + \frac{\pi}{2}$$

$$\therefore x = (2n+1)\pi, 2n\pi + \frac{\pi}{2}$$

(iv)
$$\max(\sin x - \cos x) = \max\left(\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)\right) = \sqrt{2}$$

(d) (i)
$$y = \frac{x^2}{4a}$$

$$\frac{dy}{dx} = \frac{x}{2a}$$

$$m_p = \frac{dy}{dx|_{x=2ap}} = \frac{2ap}{2a} = p$$

$$\therefore y - ap^2 = p(x - 2ap)$$

$$\therefore y = px - 2ap^2 + ap^2 = px - ap^2$$
Alternatively:
$$x = 2at, y = at^2$$

$$\frac{dx}{dt} = 2a, \frac{dy}{dt} = 2at$$

$$\frac{dy}{dt} = \frac{dy}{dx/dt} = \frac{2at}{2a} = t$$

$$\therefore m_p = \frac{dy}{dx|_{t=p}} = p$$

Alternatively:

$$x = 2at, y = at^2$$

 $\frac{dx}{dt} = 2a, \frac{dy}{dt} = 2at$
 $\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2at}{2a} = t$
 $\therefore m_p = \frac{dy}{dx}_{l=p} = p$

(ii) The directrix is
$$y = -a$$

$$m_{OP} = \frac{ap^2 - 0}{2ap - 0} = \frac{p}{2}$$

$$\therefore y - ap^2 = \frac{p}{2}(x - 2ap) = \left(\frac{p}{2}\right)x - ap^2$$

$$\therefore y = \left(\frac{p}{2}\right)x$$

$$Q: \text{ sub } y = -a \Rightarrow x = -\frac{2a}{p}$$

$$Q\left(-\frac{2a}{p}, -a\right)$$

(iii) Focus is
$$(0,a)$$

$$m_{QS} = \frac{a - (-a)}{0 - \left(-\frac{2a}{p}\right)} = \frac{2a}{2a/p} = 2a \times \frac{p}{2a} = p$$

$$\therefore QS \parallel \text{tangent at } P.$$

Question 4

- a c) 16! Standard Boshwork.
 - u) If 2 keeple MUST be neuted together Counter atem as joined A = B or B = A
 This can be done in 2×15! may a
 Hence I people not together 16! -2×15!
 = 15! (16-2)
- (b) $\frac{1+t^2}{1+t^2}$ $\frac{2}{1+t^2}$ $\frac{1+t^2}{1+t^2}$ Here $\frac{0}{2} = \frac{1}{\sqrt{1}}$

- $f(x) = (x^{2}-3x+1) Q(x) + (4x-7)$ = (x-1)(x-2) Q(x) + (4x-7) f(1) = 0 + 4-7 = -3
- 4) If f(x) is odd den curve bases chough origin se x is a factor

 If $(x-5)^2$ is a factor then $(x+1)^2$ must also be
 a factor P(-5) = P(5) = 0Herea $f(x) = kx (x-5)^2 (x+5)^2$ If f(0) = 1652 $1152 = k \times 16 \times 36$ k = 2Herea $f(x) = 22(x-5)^2 (x+5)^2$

- 1) 11 2= 20/120g
 - = 2/1+2/2 (1+2) (2
- ii) Gradient of = $\frac{af^2}{2af} = \frac{1}{2}$ Gradient OQ = $\frac{1}{2}$ Sence \perp $\frac{1}{2}$ $\frac{2}{2}$ = -1 $\frac{1}{2}$ $\frac{2}{4}$ = 0
- (iii) From (1) $\frac{2^{2}}{0} = \int_{0}^{2} \frac{1}{4} \int_{0}^{4} \frac{1}{4} dt$ From (1)
- = $\frac{a}{2}(\mu^{2}+e^{2})$ 1 Here $\frac{2\pi}{a} = \frac{x^{2}}{a^{2}} + 8$ $y = \frac{x^{2}}{2a} + 4a$

Question 5

PUBSITONS

(b) Clace Frist letter in 6 ways. The place P, in ways. then place the other three letters is. 5 x 4x3 ways.

6x 4x 5x4x3 = [1440.]

(6) when m=1. LAS = sin (17+8) = - sin 8.

RHS = (-1) an 0 = - sin 0.

Luc when m = 1.

when n=k. sin(k+0)=(-1) in 0.

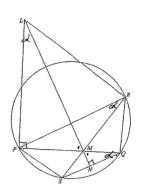
it is also time when n = k+1.

(8) ie si ((k+1) 17+0) = (-1) 2 .

LHS = sin ((6+1)+6) = in ((6+1+6)+1) = - sin (6+1+6) (using the identity = -1 × (-1) sin (A+1) = - sin A) = (-1) k+1 = 0 = 0+1

Having account time for n= & we present time for n=1 it is line for n=1 it is line for n=2 etc and hence time for all facilities integers.

(d). (



(11) LLAM = LMMQ = 90° (data) LLMA = LMMQ (wanteally offsite) ... OPML 111 ONMQ (equiangular)

(III) LPLY = LNOM=2 (considerate of any lend similar triangles)

LNOM = LSAP-2 (anyborin the same arguest standing on the same are are eight).

LPLM = LPAM = 2.

PMRL is a cycle gnadilateral. (The interval py subtends equal angles at the pairs 4 and R)

... LLRS = 90° (official angles of a cyclic gurdulation are sufflementary)