

SYDNEY BOYS' HIGH SCHOOL

MOORE PARK, SURRY HILLS

Year 11 YEARLY EXAMINATIONS - August 2000

MATHEMATICS

Time allowed — Two Hours Examiners: E.Choy, A.M.Gainford

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- · Approved calculators may be used.
- Use a new booklet for each question.
- If required, additional booklets may be obtained from the Examination Supervisor upon request.

Question 1. (18 Marks) (Start a new booklet.)

(a) Calculate
$$\sqrt{\frac{67}{4 \cdot 7 \times 2 \cdot 3}}$$
 correct to two decimal places.

(b) Simplify
$$x - 2(3 - x)$$
.

(c) Solve the equation
$$\frac{x}{3} - \frac{x+1}{2} = 4$$
.

(d) Simplify
$$\sqrt{32} - \sqrt{8}$$
.

(e) Find x if
$$\log_3 x = 4$$
.

(f) Find
$$\theta$$
 to the nearest minute if $0^{\circ} \le \theta \le 90^{\circ}$ and $\cos \theta = 0.613$.

(g) Solve the equation
$$3x^2 = 12$$
.

(h) Graph on a number line the solution of the inequality
$$|x-2| < 3$$
.

(i) Simplify
$$\frac{(xy^2)^3}{x^3y^2}$$
.

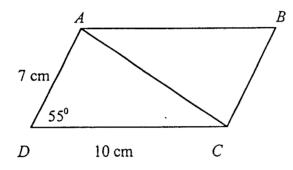
(j) Find the exact value of
$$\sin 135^{\circ} + \tan 480^{\circ}$$
.
Express your answer as a single fraction with rational denominator.

(k) Given that
$$f(x) = x - \frac{1}{x}$$
:

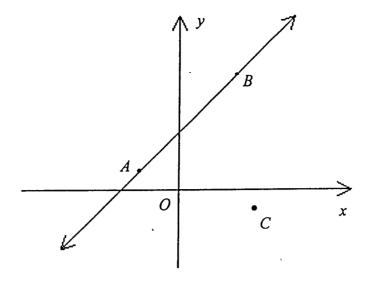
(i) Find
$$f(4)$$
.

(ii) Show that
$$f(x)$$
 is an odd function.

Question 2. (18 Marks) (Start a new booklet.)


(a) Simplify
$$\frac{x^2 - y^2}{(x + y)^2}$$
.

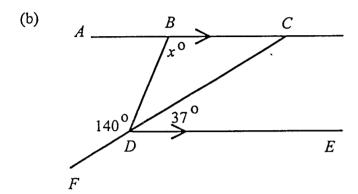
(b) Sketch the graphs of the following:


(i)
$$y = (x-1)^2$$

(ii)
$$y = \sqrt[3]{x}$$

- (c) Express the recurring decimal 0.4232323... as a common fraction.
- (d) Given the parallelogram ABCD:

- (i) Find the length of the diagonal AC, correct to 2 decimal places.
- (ii) Calculate the area of the parallelogram, correct to 2 decimal places.
- (e) State the natural domain and range of the function $f(x) = \sqrt{9 x^2}$.

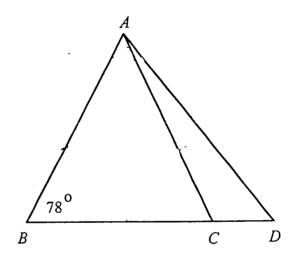

The diagram above shows the points A(-2,1), B(3,5), and C(4,-1).

Copy the diagram to your answer booklet.

- (i) Find the equation of the line through the points A and B.
- (ii) Write the equation of the line through C perpendicular to AB.
- (iii) Hence or otherwise find the distance from C to AB.

Question 3. (18 Marks) (Start a new booklet.)

- (a) (i) Find the points of intersection of the line y = 4 x and the circle $x^2 + y^2 = 16$.
 - (ii) Hence sketch the region where $y \ge 4 x$ and $x^2 + y^2 < 16$ hold simultaneously.



AC||DE, CDF| is a straight line.

Find the measure of x.

(c)
$$AB = AC = BD$$
.

Determine the size of $\angle ADB$ and $\angle DAC$ giving reasons.

(d) Solve the following equations:

(i)
$$x^4 - 13x^2 - 9 = 0$$

(ii)
$$9^x - 8(3^x) - 9 = 0$$

- (e) For the parabola $y^2 6y 2x + 7 = 0$ write down the
 - (i) equation of the axis of symmetry
 - (ii) coordinates of the vertex
 - (iii) equation of the directrix and coordinates of the focus.
- (f) Show that the expression $x^2 (k+2)x + (3k+6)$ is positive definite if -2 < k < 10.

Question 4. (18 Marks) (Start a new booklet.)

(a) Differentiate the following with respect to x:

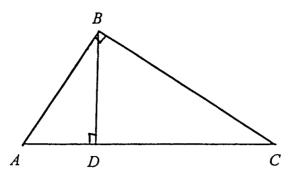
(i)
$$-x^3 + 2x^2 + \frac{1}{2}$$

(ii)
$$\sqrt{7x}$$

(iii)
$$\frac{ax^3 - bx^2 + cx}{x^2}$$

- (b) Use the product rule to find $\frac{dy}{dx}$ if $y = 2x(x+1)^8$.
 - (ii) Differentiate $y = \frac{5+t}{5-2t}$ by using the quotient rule.

(iii) If
$$f(x) = 3x + \frac{1}{x^3}$$
, find


$$(\alpha)$$
 $f'(2)$

$$(\beta)$$
 $f''(2)$

- (c) For the curve $y = \frac{1}{x^2}$, find the gradient of the tangent to the curve at the point $\left(2, \frac{1}{4}\right)$. Also find the gradient of the normal to the curve at this point.
 - (ii) Given that f(x) is defined as below, find the value of f(-3) + f(4) + f(-1).

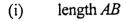
$$f(x) = \begin{cases} -5 & \text{for } x \le -3\\ 2x & \text{for } -3 < x < 0\\ x^2 & \text{for } x \ge 0 \end{cases}$$

(d)

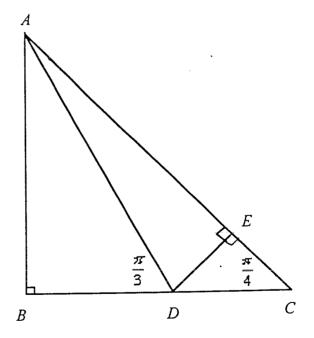
In the diagram ABC and ABD are right-angled triangles. $\angle ADB = \angle ABC = 90^{\circ}$.

Copy the diagram to your answer booklet.

- (i) Prove that $\triangle ABD \parallel \triangle ACB$.
- (ii) Hence find AB if AD = 4 cm and DC = 5 cm.
- (e) Find the value or values of k that will make the equation $x^2 + 16x 4k = 0$ have:
 - (i) equal roots
 - (ii) two distinct real roots
 - (iii) roots which are reciprocals of one another
 - (iv) the sum of roots equal to their product.


Question 5. (18 Marks) (Start a new booklet.)

- (a) The point P(x,y) moves in the plane so that its distance from a point A(-2,4) is always twice its distance from the point B(4,1).
 - (i) Write down an expression connecting PA and PB.
 - (ii) Hence find the locus of P.
- (b) Consider the function $y = \frac{1}{|x-1|}$.
 - (i) What is the natural domain of the function?
 - (ii) Write down the equations of the two branches of the function, and sketch its graph.
- (c) Solve the equation $8\cos^2 x = 2\sin x + 7$ where $0^0 \le x \le 360^0$. Give your answer correct to the nearest minute.
- (d) Prove the identity


$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$$

(e) The diagram shows a right-angled triangle ABC, whose angle ACB is $\frac{\pi}{4}$. Line AD meets BC at D such that angle ADB is $\frac{\pi}{3}$, and length BD is one unit. Line DE meets line AC at right angles.

Find in exact form the:

- (ii) length DC
- (iii) length DE
- (iv) $\angle DAC$ in terms of π , and hence show that $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$.

This is the end of the paper.

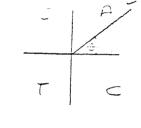
Oueshon 1

a.
$$\sqrt{\frac{63}{4.3\times 2.3}} = \sqrt{\frac{63}{10.01}} = \frac{2.49}{4.3\times 2.3}$$

b. $x-2(3-x) = x-6+2x$

$$= \frac{3x-6}{2}$$

c. $\frac{x}{3} - \frac{x+1}{2} = \frac{4}{2}$


$$= \frac{2x}{3} - \frac{3(x+1)}{2} = \frac{24}{3}$$

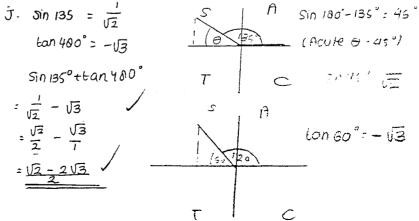
$$\frac{x = -29}{4\sqrt{2} - 2\sqrt{2}} = 2\sqrt{2}$$

2x-3x-3=24 /

e.
$$\log_3 x = 4$$
 | IF $y = a^x$,
 $3^4 = x$ | then $x = \log_a y$

F. Cas
$$\theta = 0.613$$

(Acute $\theta = 52^{\circ}12^{\circ}$)
 $\theta = 52^{\circ}12^{\circ}$



9.
$$3x^{2} = 12$$

 $3x^{2} - 12 = 0$
 $3(x^{2} - 4) = 0$
 $3(x - 2)(x + 2) = 0$
 $x = 2 \text{ or } x = -2$

-14×45

i.
$$\frac{(xy^2)^3}{x^3y^2} = \frac{x^3y^6}{x^3y^2} = \frac{y^4}{y^3y^2}$$

j. $\sin 135 = \frac{1}{\sqrt{2}}$
 $\tan 400^\circ = -\sqrt{3}$

$$K.$$
 $f(x) = x - \frac{1}{x}$

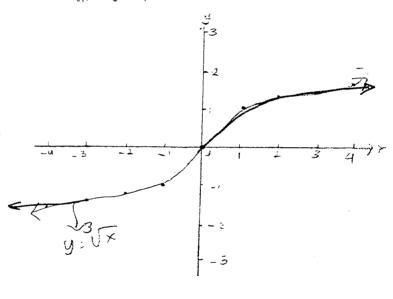
(i).
$$f(4) = 4 - \frac{1}{4} = 3\frac{3}{4}$$
 /
(ii) $f(x) = x - \frac{1}{2}$

$$f(-x) = (-x) - \frac{1}{(-x)}$$

$$= (-x) + \frac{1}{x}$$

$$= -x + \frac{1}{x} \qquad f = -(x - \frac{1}{x}) = -f(x)$$

: It is an odd Function


Ovestion 2

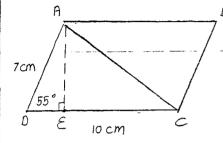
$$\frac{x^{2}-y^{2}}{(x+y)^{2}} = \frac{x^{2}-y^{2}}{(x+y)(x+y)} = \frac{(x+y)(x-y)}{(x+y)} = \frac{x-y}{x+y}$$

$y = (x-1)^2$

-	•		, ,							
	× -	4 -3	3 -2	40	1 2	3	4			
-	y P	T 13	, 9	4 1	0 1	9	9			
to be a super-property of the second place and instrument is provided by the super-special to a super-property of the second super-p				3 -:		9			·	: -l
			•			1 2	. 3	u		

(ii).	11 - 3	1
IiiI .	92	レス

y	=	ĹΧ	-11	(x-1	1
J	_	Cr.	11	C/C -1	,


	X=1
y-intercept, x=0	y=(-1)(-1)
	= 1

Let $\times = 0.4232323......$ (i)

(i)×10 10× = 4.232323(ii)

(ii)×100 1000 × =423.23233 (iii)

d.

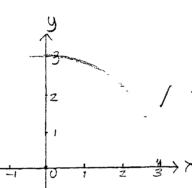
AE 7 Sin 55° Singo

AE = 5.73 cm

(i). Ac2 = AD2+OC2-2(AD)(DC) COS 550

= 49+100 - 2(7)(10) Cos 55°

= 149 - 140 Cos 55°


AC = 8.29 cm /

Lii). ARea = DCXAE

10 cm x 5.73 cm

57.34 cm² /

$$f(x) = \sqrt{9 - x^2}$$

Domain: $-3 \le x \le 3$

Range : $0 \le y \le 3$

(i). A (-2,1), B(3,5), C(4,-1)

$$M_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{3 - (-2)} = \frac{4}{5}$$

 $y - y_1 = m(x - x_1)$

$$y-1 = \frac{4}{5}(x+2)$$

$$y-1 = \frac{4}{5} \times + \frac{8}{5} \quad 6$$

$$0 = 4x - 5y + 13$$

$$d = \frac{10x_1 + 6y_1 + C_1}{\sqrt{0.2 + 6x_2}}$$

Va2+62 14x-54+131 1(4)(4+(-5)(-1)+131

(ii).
$$M_1 = \frac{4}{5}$$

$$M_2 = -\frac{5}{4}$$
 (lines are perpendicular)

$$y+1 = -\frac{\pi}{4}(x-4)$$

