

SYDNEY BOYS' HIGH SCHOOL

MOORE PARK, SURRY HILLS

Year 11 YEARLY EXAMINATIONS - August 2000

MATHEMATICS

Time allowed — Two Hours Examiners: E.Choy, A.M.Gainford

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- · Approved calculators may be used.
- Use a new booklet for each question.
- If required, additional booklets may be obtained from the Examination Supervisor upon request.

Question 1. (18 Marks) (Start a new booklet.)

(a) Calculate
$$\sqrt{\frac{67}{4 \cdot 7 \times 2 \cdot 3}}$$
 correct to two decimal places.

(b) Simplify
$$x-2(3-x)$$
.

(c) Solve the equation
$$\frac{x}{3} - \frac{x+1}{2} = 4$$
.

(d) Simplify
$$\sqrt{32} - \sqrt{8}$$
.

(e) Find x if
$$\log_3 x = 4$$
.

(f) Find
$$\theta$$
 to the nearest minute if $0^{\circ} \le \theta \le 90^{\circ}$ and $\cos \theta = 0.613$.

(g) Solve the equation
$$3x^2 = 12$$
.

(h) Graph on a number line the solution of the inequality
$$|x-2| < 3$$
.

(i) Simplify
$$\frac{(xy^2)^3}{x^3y^2}$$
.

(k) Given that
$$f(x) = x - \frac{1}{x}$$
:

(i) Find
$$f(4)$$
.

(ii) Show that
$$f(x)$$
 is an odd function.

Question 2. (18 Marks) (Start a new booklet.)

(a) Simplify
$$\frac{x^2 - y^2}{(x+y)^2}$$
.

(b) Sketch the graphs of the following:

(i)
$$y = (x-1)^2$$

(ii)
$$y = \sqrt[3]{x}$$

- (c) Express the recurring decimal 0.4232323... as a common fraction.
- (d) Given the parallelogram ABCD:

- (i) Find the length of the diagonal AC, correct to 2 decimal places.
- (ii) Calculate the area of the parallelogram, correct to 2 decimal places.
- (e) State the natural domain and range of the function $f(x) = \sqrt{9 x^2}$.

The diagram above shows the points A(-2,1), B(3,5), and C(4,-1).

Copy the diagram to your answer booklet.

- (i) Find the equation of the line through the points A and B.
- (ii) Write the equation of the line through C perpendicular to AB.
- (iii) Hence or otherwise find the distance from C to AB.

Question 3. (18 Marks) (Start a new booklet.)

- (a) (i) Find the points of intersection of the line y = 4 x and the circle $x^2 + y^2 = 16$.
 - (ii) Hence sketch the region where $y \ge 4 x$ and $x^2 + y^2 < 16$ hold simultaneously.

AC||DE, CDF| is a straight line.

Find the measure of x.

(c)
$$AB = AC = BD$$
.

Determine the size of $\angle ADB$ and $\angle DAC$ giving reasons.

(d) Solve the following equations:

(i)
$$x^4 - 13x^2 - 9 = 0$$

(ii)
$$9^x - 8(3^x) - 9 = 0$$

- (e) For the parabola $y^2 6y 2x + 7 = 0$ write down the
 - (i) equation of the axis of symmetry
 - (ii) coordinates of the vertex
 - (iii) equation of the directrix and coordinates of the focus.
- (f) Show that the expression $x^2 (k+2)x + (3k+6)$ is positive definite if -2 < k < 10.

Question 4. (18 Marks) (Start a new booklet.)

(a) Differentiate the following with respect to x:

(i)
$$-x^3 + 2x^2 + \frac{1}{2}$$

(ii)
$$\sqrt{7x}$$

(iii)
$$\frac{ax^3 - bx^2 + cx}{x^2}$$

- (b) Use the product rule to find $\frac{dy}{dx}$ if $y = 2x(x+1)^8$.
 - (ii) Differentiate $y = \frac{5+t}{5-2t}$ by using the quotient rule.

(iii) If
$$f(x) = 3x + \frac{1}{x^3}$$
, find

$$(\alpha)$$
 $f'(2)$

$$(\beta)$$
 $f''(2)$

- (c) For the curve $y = \frac{1}{x^2}$, find the gradient of the tangent to the curve at the point $\left(2, \frac{1}{4}\right)$. Also find the gradient of the normal to the curve at this point.
 - (ii) Given that f(x) is defined as below, find the value of f(-3) + f(4) + f(-1).

$$f(x) = \begin{cases} -5 & \text{for } x \le -3 \\ 2x & \text{for } -3 < x < 0 \\ x^2 & \text{for } x \ge 0 \end{cases}$$

(d)

In the diagram ABC and ABD are right-angled triangles. $\angle ADB = \angle ABC = 90^{\circ}$.

Copy the diagram to your answer booklet.

- (i) Prove that $\triangle ABD \parallel \triangle ACB$.
- (ii) Hence find AB if AD = 4 cm and DC = 5 cm.
- (e) Find the value or values of k that will make the equation $x^2 + 16x 4k = 0$ have:
 - (i) equal roots
 - (ii) two distinct real roots
 - (iii) roots which are reciprocals of one another
 - (iv) the sum of roots equal to their product.

Question 5. (18 Marks) (Start a new booklet.)

- (a) The point P(x,y) moves in the plane so that its distance from a point A(-2,4) is always twice its distance from the point B(4,1).
 - (i) Write down an expression connecting PA and PB.
 - (ii) Hence find the locus of P.
- (b) Consider the function $y = \frac{1}{|x-1|}$.
 - (i) What is the natural domain of the function?
 - (ii) Write down the equations of the two branches of the function, and sketch its graph.
- (c) Solve the equation $8\cos^2 x = 2\sin x + 7$ where $0^0 \le x \le 360^0$. Give your answer correct to the nearest minute.
- (d) Prove the identity

$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$$

(e) The diagram shows a right-angled triangle ABC, whose angle ACB is $\frac{\pi}{4}$. Line AD meets BC at D such that angle ADB is $\frac{\pi}{3}$, and length BD is one unit. Line DE meets line AC at right angles.

Find in exact form the:

- (ii) length DC
- (iii) length DE
- (iv) $\angle DAC$ in terms of π , and hence show that $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$.

This is the end of the paper.

Sydney Boys' High School
Year II
Yearly Examinations-Pugust 2000

Oueshon 1

a.
$$\sqrt{\frac{63}{4.9\times2.3}} = \sqrt{\frac{67}{10.01}} = \frac{2.49}{10.01}$$

b. $\times -2(3-x) = x - 6 + 2x$

c.
$$\frac{\frac{x}{3} - \frac{x+1}{2}}{2x - 3(x+1)} = \frac{3x - 6}{2x}$$

$$2x - 3(x+1) = 24$$

$$2x - 3x - 3 = 24$$

d.
$$\sqrt{32-\sqrt{8}} = 4\sqrt{2-2\sqrt{2}} = 2\sqrt{2}$$

e.
$$\log_3 x = 4$$
 | IF $y = a^x$, then $x = \log_a y$

$$\therefore x = 81$$

F. Cas
$$\theta = 0.613$$

(Acute $\theta = 52^{\circ}12^{1}$)
 $\theta = 52^{\circ}12^{1}$

9.
$$3x^{2} = 12$$

 $3x^{2} - 12 = 0$
 $3(x^{2} - 4) = 0$
 $3(x - 2)(x + 2) = 0$
 $x = 2 \quad 0R \quad x = -2$

i.
$$\frac{(xy^2)^3}{x^3y^2} = \frac{x^3y^6}{x^3y^2} = \frac{y^4}{y^3}$$

J.
$$\sin 135 = \sqrt{2}$$
 $\tan 400^{\circ} = -\sqrt{3}$
 $\sin 130^{\circ} - 135^{\circ} = 45^{\circ}$
 $\tan 400^{\circ} = -\sqrt{3}$
 $\sin 135^{\circ} + \tan 400^{\circ}$
 $\cot 100^{\circ} = -\sqrt{3}$
 $= \sqrt{2} - \sqrt{3}$
 $= \sqrt{2} - 2\sqrt{3}$
 $= \sqrt{2} - 2\sqrt{3}$
 $= \sqrt{2} - 2\sqrt{3}$

$$k. \int f(x) = x - \frac{1}{x}$$

(i).
$$f(4) = 4 - \frac{1}{4} = 3\frac{3}{4}$$
 /
(ii) $f(x) = x - \frac{1}{2}$

$$f(-x) = (-x) - \frac{1}{(-x)}$$

$$= (-x) + \frac{1}{x}$$

$$= -x + \frac{1}{x} \qquad f = -(x - \frac{1}{x}) = -f(x)$$

: It is an odd Funchon

Question 2

$$\frac{x^{2}-y^{2}}{(x+y)^{2}} = \frac{x^{2}-y^{2}}{(x+y)(x+y)} = \frac{(x+y)(x+y)}{(x+y)} = \frac{x-y}{x+y}$$

$y = (x-1)^2$

<u></u>
x -4 -3 -2 -1 0 1 2 3 4
4 25 16 9 4 1 0 1 4 9
1 19 1
8
2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\\-
-U-3-2-10123U7X

(ii) . y= 3/x

ų	_	ſĸ	-11	(x-	1)
J	-	いへ	נור	(V -)	1

; =	<u> </u>			
y-intercept, x=0	y=(-1)(-1)			
	= 1			

Let x = 0.4232323..... (i)

(i)×10 10× = 4.232323 - - - - (ii)

(ii)×100 1000 × = 423.23233.....(iii)

d.

AE . 7 Sin 55° sin go AE = 5.73 cm (i). Ac2 = AD2+OC2-Z(AD)(OC) COS 550

= 49+100 - 2(7)(10) Cos 55°

= 149 - 140 COS 55°

AC : 8.29 cm.

DCXAE Lii). ARea =

10 cm x 5-73 cm

57.34 cm²

Domain: $-3 \le x \le 3$

Range : $0 \le y \le 3$

F. (i). A (-2,1), B(3,5), C(4,-1)

$$M_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{3 - (-2)} = \frac{4}{5}$$

 $y - y_1 = m(x - x_1)$

$$y-1 = \frac{4}{5}(x+2)$$

$$y-1 = \frac{4}{5} \times + \frac{8}{5}$$

(ii).
$$M_1 = \frac{4}{5}$$

 $M_2 = -\frac{5}{9}$ (lines are perpendicular)
 $y-y_1 = m(x-x_1)$
 $y+1 = -\frac{5}{4}(x-y_1)$
 $y+1 = -\frac{5}{4}x+5$
 $4y+4 = -5x+20$
 $5x+4y-16=0$

$$d = \frac{10x_1 + 6y_1 + C_1}{\sqrt{0.2 + 6.2}}$$

$$= \frac{14x_1 - 5y_1 + 131}{\sqrt{16 + 3x_1}}$$

$$= \frac{1(4)(4 + (-5)(-1) + 131}{\sqrt{16 + 3x_1}}$$

$$= \frac{1(4)(4+(-5)(-1)+13}{\sqrt{16+24}}$$

$$= \frac{116+7+131}{\sqrt{41}} = \frac{34}{\sqrt{41}} = \frac{34}{\sqrt{41$$