

SEPTEMBER 2009

Yearly Examination

YEAR 11

Mathematics (2 unit) & Extension Continuers

Instructions:

- Each Question is to be returned in a separate booklet.
- Question 1 & 2 are to be collected after 60 minutes at which time the 2 unit Mathematics students will be dismissed.
- Question 3 & 4 are to be collected after 105 minutes.
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- · Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

Examiner: A Fuller

(Use a SEPARATE writing booklet)

Question 1 (28 marks)

(a) Find the value of $log_3 9$.

1

6

(b) Solve the following for x:

(i) $\log_6 x = 3$

(ii) $\log_x 3 = -1$

(iii) $2^{2x+1} = \frac{1}{16}$

(iv) $x^2 + 3x - 18 = 0$

7

(c) Differentiate the following with respect to x:

(i) 2x + 5

(ii) $\frac{1}{2x+}$

(iii) $\frac{2x+5}{x}$

(iv) $\frac{x}{2x+5}$

- (c). Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The tangents at P and Q intersect at the point T. Let S(0, a) be the focus of the parabola.
 - (i) Show that the equation of the tangent to the parabola at P is given by $y=px-ap^2.$
 - (ii) Find the co-ordinates of T.
 - (iii) Show that $SP = a(p^2 + 1)$.
 - (iv) Suppose P and Q move on the parabola so that SP+SQ=4a. Show that the locus of the point T is a parabola.

End of paper

•

4

- (d) Sketch the following on separate axes showing any intercepts with the co-ordinate axes and any asymptotes:
 - (i) $y = \frac{1}{x} + 1$
 - (ii) $y = \log_2(x+1)$
- (e) Write $2x^2 7x 4$ in the form $a(x+2)^2 + b(x+2) + c$.
- (f) Consider the arithmetic series: -1+3+7+11+15+...
 - (i) Which term of the series is 391?
 - (ii) Hence, find the sum up to the term which is 391.
- (g) If $f(x) = x^3 3x^2 6x$. Evaluate:
 - (i) f(-2)
 - (ii) f'(2)

(Use a SEPARATE writing booklet)

Question 2 (28 marks)

4

3

3

- (a) Consider the geometric series: $27 + 18 + 12 + 8 + \dots$
 - (i) Explain why the series has a limiting sum.
 - (ii) Find the limiting sum of the series.
- (b) Find the co-ordinates of the focus and the equation of the directrix of the parabola $y = \frac{x^2}{4} 1$.
- (c) State whether the following functions are odd, even, or neither:

2

3

2

- (i) $f(x) = x^6 + 10$
- (ii) $f(x) = \frac{x^2}{2-x}$
- (iii) $f(x) = \log_{10} 2^x$
- (d) Find using first principles the derivative f'(x) given that $f(x) = x^3$.

- (e) Let $\log_5 3 = a$ and $\log_5 2 = b$.
 - (i) Find the following in terms of a and b:
 - $(\alpha) \log_5 6$
 - $(\beta) \log_5(\frac{1}{4})$
 - (ii) Evaluate 5^{2a}.
- (f) Find the value(s) of k for which $x^2 kx + 4 = 0$ has:
 - (i) one root equal to -1
 - (ii) real roots
 - (iii) one root double the other.
- (g) Find the domain and the range of the following:
 - (i) $y = \sqrt{1-x}$
 - (ii) $y = \sqrt{1 x^2}$

4

5

 $\boxed{4}$

interest each month on the balance of his account at the time. Immediately after each interest payment is made, Caleb plans to withdraw \$1000. Let his deposit be \$D.

(h) Caleb plans to deposit an amount of money into an account which will pay him 1%

- (i) Show that when he has made his second withdrawal, the balance of his account will be $[D(1.01)^2 1000(1 + 1.01)]$.
- (ii) Caleb wants his deposit to be sufficient to be able to make withdrawals for 10 years. Find, to the nearest \$100, what his deposit must be.

(Use a SEPARATE writing booklet)

Question 3 (18 marks)

(a) Find the point dividing the interval from (-3,4) to (5,-2) in the ratio 1:3.

2

(b) Find the acute angle between the lines y = 3x - 2 and x + 2y - 3 = 0. Give the answer to the nearest degree.

3

(c) (i) Show that (x+2) is a factor of $6x^3 + 7x^2 - 9x + 2$.

3

(ii) Hence, or otherwise find all of the factors of $6x^3 + 7x^2 - 9x + 2$.

(d) Find the general solution for $\tan \theta + 1 = 0$ (in radians).

3

(e) (i) Write $\cos \theta - \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$.

4

(ii) Hence, or otherwise, solve $\cos \theta - \sqrt{3} \sin \theta = 1$ for $0 \le \theta \le 2\pi$.

(f) Given that $\sin \theta = \frac{1}{\sqrt{3}}$ and $\frac{\pi}{2} < \theta < \pi$. Find the exact value of the following:

3

(i) $\tan \theta$

(ii) $\cos 2\theta$

(Use a SEPARATE writing booklet)

Question 4 (17 marks)

(a) Solve
$$\frac{x+4}{x-2} \ge 3$$
.

3

6

(b)

- (i) The arrow on the regular pentagon is spun twice and the sum of the two numbers is recorded. Find the probability of getting:
 - (α) an odd result
 - (β) a result of at least 7
- (ii) How many times must the arrow on the regular pentagon be spun to be 99.9% sure of getting at least one 5?

e) 100 3 = 0	° K=3/2, -3/2 (2)
103.5 = D	
<u></u>	3)D3 X < 1
1) x) log_6 = log_3 + log_2	2; y>0
= Q + D =	1°; D; 71 60(E)
	R8 05451 0
B) log (4) = log 1 - log 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h):)After 1 month A,=(\$D × 1.01) - 1000
= -2h	111 - (40) 8 1 01 1 2000
	After 2pd month
$11)$ $5^{20} = (5^{0})^{2}$	$\Omega_2 = (A, \times 1.01) - 1000$
$\begin{array}{c} = 3^2 \\ = 9 \end{array}$	$= \frac{(\frac{1}{3} D \times 1.01) - 1000}{(\frac{1}{3} D \times 1.01)^2 - 1000} \times 1.01 - 1000}$
t) 23- Kx + A = 0	$_{*} = \# \overline{D(1.01)^{2} - 1000(1.01 + 1)}$
1) (-1)2+2 +4=0	= \$[D(1-01)^2-1000(1+101)] (2)
X=-5 0	D (1.01)120 -1000 [1.01"+ 1.01"8
	F1.01"7, +1.01 +1] >0
11) A>O 32 Jb2-4ac >> O	11/2 - 2 / 15 2 22 / 25
b ² -4ac >0	this part is a series a=1, r=1.01 n=120
(-x)2-4x1x4 >0	
4 ² - 16 70	Sn = 1(1.01 -1)
<u> </u>	1:01 -1
··	0(1.01) - 1000 × 1 (1.01 2-1) >0
111) x+13=-b/a	1.01-1
3x=x 	- D(I-OI) >, 1000 x I(I-OI -1)
<u> </u>	1.01 -1 D>, 1000 × (1.01" -1)
2×2 = 4	1.01-1
$\frac{2^2 = 4^2}{1 \cdot 2}$	(1.01)120
α=±152	
N.C.	177 461,700 (1100,100)

THEN

$$y = fol - af^{2}$$
 $= fol (f+q) - af^{2}$
 $= af^{2} + afq - af^{2}$
 $= afq$

So $x = a(f+q)$
 $g = afq$
 $sp = afq$

 $\frac{2l^2}{a^2} = 2 + \frac{2q}{a}$ $st^2 = 2ay + 2a^2$ $z^2 = 2a(y + a)$ $z^2 = 4 \cdot \frac{a}{2}(y + a)$ $x^2 = 4 \cdot A \quad Y$ Parabola
Verlan (0,-a)
Found (ength a)

Forms is