

2002
HIGHER SCHOOL CERTIFICATE
APRIL EXAMINATION

# **Mathematics Extension 2**

#### **General Instructions**

- Reading time 5 minutes
- Working time 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

## Total marks — 60

- Attempt questions 1–3
- All questions are of equal value

Examiner: D.M.Hespe

Note: This is an assessment task only and does not necessarily reflect the content or

format of the Higher School Certificate.

## Total marks – 60 Attempt Questions 1–3 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (20 marks) Use a SEPARATE writing booklet.

(a) (i) Calculate 
$$|15-20i|$$
,

(ii) Find 
$$arg\left(-1-\frac{3}{\sqrt{2}}i\right)$$
.

(b) Solve 
$$x^2 = 4x - 20$$
 over the complex field.

(c) The polynomial 
$$z^3 - 7z^2 + 25z - 39$$
 has one zero equal to  $2 + 3i$ . Write down its three linear factors.

(d) (i) Differentiate 
$$x \ln x$$
.

(ii) Hence show that a primitive of 
$$\ln x$$
 is  $x \ln x - x$ .

(e) Give the domain and range of 
$$3\cos^{-1}3x$$
.

(f) Find the square roots of 
$$5 + 12i$$
.

(g) Show that 
$$z-i$$
 is a factor of  $z^3 + 2iz^2 + 3i$ .

(h) Prove that the complex numbers 
$$1+6i$$
,  $3+10i$ , and  $4+12i$  are collinear on an Argand diagram.

(i) The curves 
$$y = \ln x$$
 and  $y = x - 1 \cdot 1$  intersect near  $x = 1 \cdot 5$ . Use one iteration of Newton's method to get a better estimate.

Question 3 (20 marks) Use a SEPARATE writing booklet.

(a) (i) Show that 
$$\frac{1}{1+u^2} = 1 - u^2 + u^4 - u^6 + u^8 - ...$$

- (ii) By integrating both sides of the above expression from 0 to x, show by a suitable choice of x, that  $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- (b) (i) If z = x + iy and  $z' = 1 + \frac{1}{z}$ , obtain an expression for z' in the form x' + iy', and hence express each of x' and y' in terms of x and y.
  - (ii) Find an algebraic relation between x' and y' when z has constant argument  $\theta$ .



The lines in the above figure represent the streets in a city. A messenger wants to get from (0, 0) to (x, y), where x, y are non-negative integers, moving in the positive directions of x and y only.

Let the number of possible routes be denoted by f(x,y).

- (i) Evaluate f(k,1).
- (ii) Show that f(k+1, 2) = f(k, 2) + f(k+1, 1).
- (iii) By means of mathematical induction or otherwise, prove that  $f(m,2) = \frac{1}{2}(m^2 + 3m + 2)$  for all non-negative integral values of m.

## End of paper

Question 2 (20 marks) Use a SEPARATE writing booklet.

(a) Prove that  $\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$ .

3

3

(b)



A line DE parallel to the base BC of a triangle ABC cuts AB, AC in D and E respectively. The circle which passes through D, and touches AC at E, meets AB at F. Prove that F, E, C, B lie on a circle.

(c) (i) Sketch the locus of z on an Argand diagram such that  $|z| = |z+1-\sqrt{3}i|$ .

2

3

(ii) Describe the locus of z shaded on the diagram.



(d) (i) Use De Moivre's theorem to express  $\cos 3\theta$  in terms of  $\cos \theta$  and  $\sin 3\theta$  in terms of  $\sin \theta$ .

3

(ii) Use the result to solve the equation  $8x^3 - 6x + 1 = 0$ .

2

(iii) Deduce that  $\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$ .

2

(e)  $\int_0^2 \frac{dx}{\sqrt{2x-x^2}}$ . [Hint: try completing the square.]

2

(g) P(a)=i)+si2+1i =-i-vi+si =0

: (3-i) in a factur.

(h) It j,=1+6i

3v = 3+10i

33 = 4+1vi

new 3,-3,= x+4: -: ag(3,-3.) = ta-2.

als of (30-30) = of (1+2i) = ta-14.

i. rectus zvz, aszo-zv are parallel.

is alluen!

is your lox = x -1.1.

Counder fax = hx - x + 1.1.

mu far = 1 -1

9/ 2,=1.5 - fan 2v=1.5 - fan

= 1.51 K38r -

QUESTION 1.

= 25.

(h) ang (-1-3/i) = (T - 1.13024)
= -2.0113

OA (-115941)

(b) x -4x = -70 (x-v) = -16 x-v = ± 4i x = 2 ± 4i

(c) Py, = 3 -72 +252-39.

And Anegers is 2+3i
... Rutherzers is 2-3i (by very upote

me of the atternet is B.

2+3:+2-3:+ \$=7 (\fix=-\frac{6}{2})

·. Pgy = (z-r+3i)(z-r-3i)(z-3)

of y=xhx y=x+1.hx =1+hx cer D: 1~15 }

R: 05 7 5317.

(f) V5+12i = a+ib 5+12i = 2-b +02bi

25 +14 4 = 169

0 +0 20x =18

ar = 9

a = ± 3

1.5=±V

Here sests are = (3+ xi)

$$f(k,2) = {k+2 \choose 2}, f(k+1,1) = {k+2 \choose 1}, f(k+1,2) = {k+3 \choose 2}$$

$$\therefore {k+2 \choose 2} + {k+2 \choose 1} = {k+3 \choose 2}$$
because of Pascal's relationship is  ${n+1 \choose 2} = {n \choose 2}$ 

because of Pascal's relationship ie  $\binom{n+1}{i} = \binom{n}{i} + \binom{n}{i-1}$ 

#### Note that $m \ge 0$

$$f(m,2) = {m+2 \choose 2} = \frac{(m+2)!}{m!2!} = \frac{(m+2)(m+1)}{2} = \frac{1}{2}(m^2 + 3m + 2)$$

#### OR with mathematical induction

When 
$$m = 0$$
. LHS =  $f(0,2) = 1$   
RHS =  $\frac{1}{2}(0^2 + 3 \times 0 + 2) = 1$   
So true for  $m = 0$ 

Assume true for 
$$m = k$$
 ie  $f(k,2) = \frac{1}{2}(k^2 + 3k + 2)$   
NTP that  $f(k+1,2) = \frac{1}{2}((k+1)^2 + 3(k+1) + 2) = \frac{1}{2}(k^2 + 5k + 6)$   
LHS =  $f(k+1,2)$   
=  $f(k,2) + f(k+1,1)$  from (ii)  
=  $\frac{1}{2}(k^2 + 3k + 2) + (k+2)$  from (i)  
=  $\frac{1}{2}(k^2 + 3k + 2) + \frac{1}{2}(2k + 4)$   
=  $\frac{1}{2}(k^2 + 5k + 6)$   
= RHS

So by the principle of mathematical induction, f(m,2) = $\frac{1}{2}(m^2+3m+2), m\geq 0$ 



### Mathematics Extension 2 Solutions April 2002

#### Question 3

(a) (i) NTP 
$$\frac{1}{1+u^2} = 1 - u^2 + u^4 - \dots$$
 for  $|u| < 1$ 

RHS =  $1 - u^2 + u^4 - \cdots$  an infinite geometric series with a = 1,  $r = -u^2$  $\therefore S_{++}$  exists since  $|u| < 1 \Rightarrow u^2 < 1 \therefore |r| < 1$ 

$$S_{10} = \frac{a}{1-r} = \frac{1}{1-(-u^2)} = \frac{1}{1+u^2}$$
 QED

(ii) 
$$\int_{0}^{x} \frac{1}{1+u^{2}} du = \int_{0}^{x} \left(1-u^{2}+u^{4}-\dots\right) du$$

$$\therefore \tan^{-1} u \Big]_{0}^{x} = u - \frac{u^{3}}{3} + \frac{u^{5}}{5} - \dots \Big]_{0}^{x}$$

$$\therefore \tan^{-1} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots$$

Let x = 1

$$\therefore \tan^{-1} 1 = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots \text{ QED}$$

(b) (i) 
$$z = x + iy, z' = x' + iy' = 1 + \frac{1}{z}$$
 }
$$\frac{1}{z} = \frac{\overline{z}}{\left|z\right|^2} = \frac{x - iy}{x^2 + y^2}$$

$$1 + \frac{1}{z} = 1 + \frac{x - iy}{x^2 + y^2} = \left(1 + \frac{x}{x^2 + y^2}\right) - i\left(\frac{y}{x^2 + y^2}\right)$$

$$\therefore x' = 1 + \frac{x}{x^2 + y^2}, y' = -\frac{y}{x^2 + y^2}$$

(ii) 
$$\arg z = \theta = \text{constant}$$
 3
$$\tan \theta = \frac{y}{x}$$

$$x' - 1 = \frac{x}{x^2 + y^2}$$

$$-y' = \frac{y}{x^2 + y^2}$$

$$\therefore \frac{-y'}{x' - 1} = \frac{\frac{y}{x^2 + y^2}}{\frac{x}{x^2 + y^2}} = \frac{y}{x} = \tan \theta$$

$$\therefore \tan \theta = \frac{y'}{1 - x'}$$

(c) (i) •

Method 1: Addition Principle



There is 1 way to get to (0,1) and 1 way to get to (1,0). So there is 1 + 1 = 2 ways to get to A. There is 1 way to get to (2,0) and 2 ways to get to (1,1). So there is 1 + 2 = 3 ways to get to B.

So there are k + 1 ways to get to K.

#### Method 2:

Use R to denote every time one move to the **RIGHT** is taken, and U to denote one move UP. To get to K, there must be k R's and only 1 U. So that 1 possible route is represented by the word  $RRR\cdots RRRU$ . So all possible words would give all possible routes.

This means the number of permutations of k + 1 letters, with k letters exactly the same ie  $\frac{(k+1)!}{k!} = k+1 = \binom{k+1}{1}$ 



The number of ways to get to N is equal to the number of ways of getting to L + the number of ways of getting to M. f(k,2) = number ways to L. f(k+1,1) = number ways to M. f(k+2,2) = number ways to N.

2

ie 
$$f(k,2) + f(k+1,1) = f(k+2,2)$$
  
QED