

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 85

- Attempt questions 1-3
- All questions are not of equal value.

Examiner: C. Kourtesis

Question 1. (Start a new answer sheet.) (31 marks)

- Marks
- (a) Given that $w = \sqrt{3} + i$, express the following in the form a + ib where a and b are real.
- 4

- (i) −*iw*
- (ii) w^2
- (ii) w^{-1}
- (b) If z = 1 i find:

4

- (i) |z| and $\arg z$
- (ii) z^8 in exact form
- (c) Consider the equation

3

$$z^{2} + kz + (4 - i) = 0$$

Find the complex number k given that 2i is a root of the equation.

(d) If z = x + iy prove that

3

$$z + \frac{|z|^2}{z} = 2 \operatorname{Re}(z)$$

(e) Sketch the locus of z satisfying

4

(i)
$$|z + 2i| = 2$$

$$e^{(ii)} \operatorname{Re}(z^2) = 0$$

(f) (i) Plot on the Argand diagram all complex numbers that are roots of $z^5=1$.

4

• (ii) Express z^5-1 as a product of real linear and quadratic factors.

Page 2

- (g) (i) By solving the equation $z^3+1=0$ find the three cube roots of -1.
 - (ii) Let ω be a cube root of -1, where ω is not real. Show that $\omega^2 + 1 = \omega$
 - (iii) Hence simplify $(1-\omega)^{12}$.
 - (iv) Find a quadratic equation with real coefficients whose roots are ω^2 and $-\omega$.

Question 2. (Start a new answer sheet.) (31 marks)

- Marks

(a) Given that $cis \theta = cos \theta + i sin \theta$ find in exact form

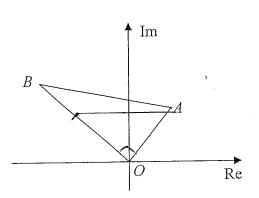
$$cis \frac{\pi}{12} cis \frac{\pi}{6}$$

- (b) The equation $x^3 + Ax + B = 0$ (A, B real) has three real roots α , β and γ .
- 9

- (i) Evaluate $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ and $\alpha^2 + \beta^2 + \gamma^2$ in terms of A and B.
- (ii) Prove that A < 0.
- (iii) Find the cubic polynomial whose roots are α^2 , β^2 and γ^2 .
- (c) It is given that z = 1 + i is a zero of $P(z) = z^3 + pz^2 + qz + 6$ where p and q are real numbers.
 - cai
 - (i) Explain why \overline{z} is also a zero of P(z). (State the theorem.)
 - (ii) Find the values of p and q.
- (d) Find the number of ways in which six women and six men can be arranged in three sets of four for tennis if:
 - 5

- (i) there are no restrictions.
- (ii) each man has a woman as a partner.
- (e) In the Argand diagram the points O, A and B are the vertices of a triangle with $\angle AOB = 90^{\circ}$ and $\frac{OB}{OA} = 2$.

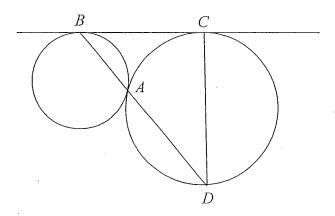
The vertices A and B correspond to the complex numbers z_1 and z_2 respectively.



Show that:

- (i) $2z_1 + iz_2 = 0$
- (ii) the equation of the circle with AB as diameter and passing through O is given by

$$\left|z-z_1\left(\frac{1}{2}+i\right)\right|=\frac{\sqrt{5}}{2}\left|z_1\right|.$$



The two circles touch at A and a common external tangent touches them at B and C. BA produced meets the larger circle at D.

Prove that *CD* is a diameter.

Question 3. (Start a new answer sheet.) (23 marks)

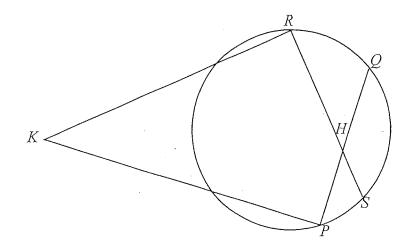
Marks 3

- (a) In how many ways can three different trophies be awarded to five golfers if a golfer may receive at most two trophies?
- 4
- (b) Sketch the region in the Argand diagram consisting of all points z satisfying
- 4

$$\left|\arg z\right| < \frac{\pi}{4}$$
 and $z + \overline{z} < 4$ and $\left|z\right| > 2$.

- (c) (i) Prove that $(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n\theta}$, where *n* is a positive integer.
 - (ii) Hence or otherwise show that $(1+z)^4 + (1-z)^4 = 0$ has roots $\pm i \tan \frac{\pi}{8}$ and $\pm i \tan \frac{3\pi}{8}$

(d)



In the diagram above PQ and RS are two chords intersecting at H, and $\angle KPQ = \angle KRS = 90^{\circ}$.

6

- (i) Copy the diagram onto your answer sheet, indicating the above information.
- (ii) Prove that
- (α) $\angle PKH = \angle PQS$.
- (β) KH produced is perpendicular to QS.
- (e) If α is a real root of the equation $x^3 + ux + v = 0$ prove that the other two roots are real if $4u + 3\alpha^2 \le 0$.

End of paper.

2005
HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK #1

Mathematics Extension 2 Sample Solutions

Question	Marker
1	PSP
2	DH
3	PRB

Question 1

(a)
$$w = \sqrt{3} + i$$

(i)
$$-iw = -i\left(\sqrt{3} + i\right) = 1 - i\sqrt{3}$$

(ii)
$$w^2 = (\sqrt{3} + i)^2 = 2 + i2\sqrt{3}$$

(iii)
$$w^{-1} = \frac{\overline{w}}{|w|^2} = \frac{\sqrt{3} - i}{4} = \frac{\sqrt{3}}{4} - i\left(\frac{1}{4}\right)$$

(b)
$$z = 1 - i$$

(i)
$$|z| = \sqrt{2}, \arg(z) = -\frac{\pi}{4}$$

(ii)
$$z^8 = \left(\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^8 = 16\operatorname{cis}\left(-\frac{8\pi}{4}\right) = 16\operatorname{cis}\left(-2\pi\right) = 16$$

(c)
$$p(z) = z^{2} + kz + (4 - i)$$

$$p(2i) = 0 \Rightarrow (2i)^{2} + k(2i) + 4 - i = 0$$

$$\therefore -4 + 2ki + 4 - i = 0$$

$$\therefore 2ki = i$$

$$\therefore k = \frac{1}{2}$$

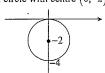
(d)
$$z = x + iy$$

$$\therefore \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

$$\therefore z + \frac{|z|^2}{z} = z + \overline{z} = 2 \operatorname{Re} z$$

(e) (i)
$$x^2 + (y+2)^2 = 4$$

A circle with centre $(0,-2)$ ie $-2i$ and radius 2



(ii)
$$\operatorname{Re}(z^2) = x^2 - y^2 = 0$$

 $\therefore x^2 = y^2$
 $\therefore y = \pm x$

(f) (i)
$$z^5 = 1 \times \operatorname{cis}(0)$$

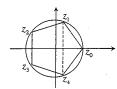
 $= \operatorname{cis}(0 + 2k\pi), k \in \mathbb{Z}$
 $= \operatorname{cis}(2k\pi)$
 $z = \left[\operatorname{cis}(2k\pi)\right]^{1/5}$
 $= \operatorname{cis}\left(\frac{2k\pi}{5}\right)$ (deMoivre's Theorem)
 $k = 0$: $z_0 = \operatorname{cis}(0) = 1$
 $k = 1$: $z_1 = \operatorname{cis}\left(\frac{2\pi}{5}\right)$

$$k=1$$
: $z_1=\operatorname{cis}\left(\frac{2\pi}{5}\right)$

$$k=2$$
: $z_2=\operatorname{cis}\left(\frac{4\pi}{5}\right)$ $|z_k|=1$

$$k = -1: z_3 = \operatorname{cis}\left(-\frac{2\pi}{5}\right)$$

$$k = -2: z_4 = \operatorname{cis}\left(-\frac{4\pi}{5}\right)$$



The 5 roots must form a regular pentagon inscribed in a unit circle.

 z_1 and z_4 are conjugates z_2 and z_3 are conjugates

(ii)
$$(z - \alpha)(z - \overline{\alpha}) = z^2 - 2 \operatorname{Re}(\alpha) z + |\alpha|^2$$

$$z^5 - 1 = (z - z_0)(z - z_1)(z - z_2)(z - z_3)(z - z_4)$$

$$= (z - 1)(z - z_1)(z - \overline{z_1})(z - \overline{z_2})(z - \overline{z_2})$$

$$= (z - 1)(z^2 - (2 \operatorname{Re} z_1)z + |z_1|^2)(z^2 - (2 \operatorname{Re} z_2)z + |z_2|^2)z$$

$$= (z - 1)(z^2 - 2z \cos \frac{2\pi}{5} + 1)(z^2 - 2z \cos \frac{4\pi}{5} + 1)$$

(g) (i)
$$z^{3} = -1$$

 $= 1 \times \operatorname{cis}(\pi)$
 $= \operatorname{cis}(\pi + 2k\pi), k \in \mathbb{Z}$
 $= \operatorname{cis}(2k+1)\pi$
 $z = \left[\operatorname{cis}(2k+1)\pi\right]^{1/3}$
 $= \operatorname{cis}(2k+1)\frac{\pi}{3}$ (deMoivre's Theorem)
 $k = 0$: $z = \operatorname{cis}\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$
 $k = 1$: $z = \operatorname{cis}\frac{3\pi}{3} = -1$
 $k = -1$: $\operatorname{cis}\left(-\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$
(ii) $z^{3} + 1 = (z+1)(z^{2} - z + 1)$
 $\omega^{3} = -1, \omega \neq -1$
 $\therefore \omega^{3} + 1 = (\omega + 1)(\omega^{2} - \omega + 1) = 0$
 $\therefore \omega^{2} - \omega + 1 = 0$ ($\because \omega \neq -1$)
 $\therefore \omega^{2} + 1 = \omega$
(iii) $(1 - \omega)^{12} = (-\omega^{2})^{12}$ (from (ii))
 $= (\omega^{3})^{8}$
 $= (-1)^{8}$
 $= (-1)^{8}$
 $= (-1)^{8}$
 $= (1)^{8}$
 $= (-1)^{8}$
 $= (2 + (\omega - \omega^{2})(z + \omega) = 0$
 $z^{2} + (\omega - \omega^{2})(z - \omega^{3}) = 0$
 $\therefore z^{2} + (1)z - (-1) = 0$ (from (ii))
 $\therefore z^{2} + z + 1 = 0$
OR more simply since $z^{3} + 1 = (z+1)(z^{2} - z + 1)$

and the three roots of -1 are so that $z^2 - z + 1 = 0$ must have roots $\omega_1 - \omega_2^2$.

So let y = -z and $y^2 + y + 1 = 0$ MUST have roots $-\omega, \omega^2$.

Question 2

$$\begin{aligned} & \text{Method 2:} \\ & \text{cis} \frac{\pi}{12} \operatorname{cis} \frac{\pi}{6} = \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right), \\ & = \cos \frac{\pi}{12} \cos \frac{\pi}{6} - \sin \frac{\pi}{12} \sin \frac{\pi}{6} + i \left(\sin \frac{\pi}{12} \cos \frac{\pi}{6} + \cos \frac{\pi}{12} \sin \frac{\pi}{6} \right), \\ & = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}, \\ & = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}. \end{aligned}$$

3

(b) i.
$$\alpha + \beta + \gamma = 0,$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = A,$$

$$\alpha\beta\gamma = -B.$$
Now,
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma},$$

$$= -\frac{A}{B}.$$
Also,
$$(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma).$$

$$\therefore \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma),$$

$$= 0 - 2A,$$

$$= -2A.$$

ii. Method 1:
$$A = -\frac{1}{2}(\alpha^2 + \beta^2 + \gamma^2).$$
 But $\alpha^2 + \beta^2 + \gamma^2 > 0$ if $\alpha \neq \beta \neq \gamma$. $A < 0$.

Method 2: $P'(x) = 3x^2 + A.$

If A > 0 then P(x) is monotonic increasing so there can be only one real root. But there are 3 real roots so A < 0.

iii. Put
$$X=x^2$$
.
$$\therefore x=\sqrt{X}.$$

$$X\sqrt{X}+A\sqrt{X}+B=0,$$

$$\sqrt{X}(X+A)=-B,$$

$$X(X^2+2XA+A^2)=B^2.$$
 New equation is $x^3+2Ax^2+A^2x-B^2=0.$

(c) i. If a+ib is a complex zero of the polynomial P(x) of degree $n \ge 1$ with real 1 coefficients, then a - ib is also a zero of P(x).

ii. Let the roots be
$$\alpha$$
, $1+i$, $1-i$, then
$$z^3+pz^2+qz+6=(z-\alpha)(z-1-i)(z-1+i),\\ =(z-\alpha)(z^2-2z+2),\\ =z^3-(\alpha+2)z^2+(2\alpha+2)z-2\alpha.$$
 Equating coefficients gives $\alpha=-3$.
$$p=-(-3+2),\\ =1.\\ q=-6+2,\\ =-4$$

2 (d) i. There are 12C4 ways of getting the first group and 8C4 ways of getting the second group leaving the third group. As the group order does not matter, we have $\frac{^{12}\text{C}_4 \times ^{5}\text{C}_4}{3!} = 5775.$

3 ii. There are ${}^6\mathrm{C}_2 \times {}^6\mathrm{C}_2$ ways of getting the first and ${}^4\mathrm{C}_2 \times {}^4\mathrm{C}_2$ ways of getting the second group, leaving the third group. As before, the group order does not matter, so we have $\frac{\left(^{6}C_{2} \times {}^{4}C_{2}\right)^{2}}{3!} = 1350$. Note that we are not asked to arrange the people within the groups, only to form the groups.

2 (e) i. Method 1: $z_2 = 2iz_1$ (Twice the length and rotated anti-clockwise by 90°), $iz_2 = -2z_1,$ $2z_1 + 2iz_2 = 0.$

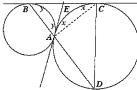
Method 2:

Let
$$z_1 = a + ib$$
,
 $z_2 = 2i(a + ib)$,
 $= 2ai - 2b$.
 $\therefore 2z_1 = 2a + 2bi$,
 $iz_2 = -2a - 2bi$.
So $2z_1 + iz_2 = 0$.

ii. Method 1:

Radius =
$$\frac{1}{2}|z_1 - z_2|$$
,
= $\frac{1}{2}|z_1 - 2z_1i|$,
= $\frac{1}{2}|z_1||1 - 2i|$,
= $\frac{1}{2}|z_1|\sqrt{1^2 + 2^2}$,
= $\frac{\sqrt{3}}{2}|z_1|$.
 $\therefore |z - z_1(\frac{1}{2} + i)| = \frac{\sqrt{6}}{2}|z_1|$.
Method 2:
Centre = $\frac{a - 2b}{2} + \frac{i}{2}(b + 2a)$,
= $\frac{a + ib}{2} + \frac{2ai - 2b}{2}$,
= $\frac{z_1}{2} + \frac{z_2}{2}$,
= $\frac{z_1}{2} - \frac{2z_1}{2i} \times \frac{i}{i}$;
= $z_1(\frac{1}{2} + i)$.
Radius² = $(\frac{a - 2b}{2})^2 + (\frac{b + 2a}{2})^2$,
= $\frac{a^2 - 4ab + 4b^2 + b^2 + 4ab + 4a^2}{4}$,
= $\frac{5a^2 + 5b^2}{4}$.
Radius = $\frac{\sqrt{6}}{2}\sqrt{a^2 + b^2}$,
= $\frac{\sqrt{6}}{2}|z_1|$
 $\therefore |z - z_1(\frac{1}{2} + i)| = \frac{\sqrt{6}}{2}|z_1|$.

(f) Method 1:



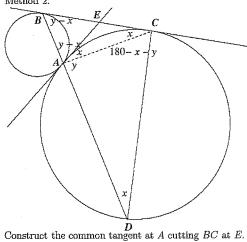
Construct the common tangent at A cutting BC at E. Join AC.

Let $A\widehat{C}E = x$, $E\widehat{B}A = y$.

EC = EA = EB (equal tangents from external point),

 $E\widehat{C}A = E\widehat{A}C = x$ (equal angles of isosceles \triangle), $E\widehat{B}A = B\widehat{A}E = y$ (equal angles of isosceles \triangle), $2x + 2y = 180^{\circ}$ (angle sum of $\triangle ABC$), $x + y = 90^{\circ} = B\widehat{A}E$ $\hat{C}\widehat{A}D = 90^{\circ}$ (supplementary to $B\widehat{A}E$), .. CD is a diameter (angle in a semi-circle is a right angle).

Method 2:



Join AC.

4

Let $\widehat{ADC} = x$, $\widehat{CAD} = y$.

 $\widehat{ACD} = 180^{\circ} - x - y$ (angle sum of \triangle),

 $E\widehat{C}A = x$ (angle in alternate segment),

 $D\widehat{B}C = y - x$ (angle sum of \triangle).

EC = EA = EB (equal tangents from external point),

 $E\widehat{C}A = E\widehat{A}C = x$ (equal angles of isosceles \triangle),

 $E\widehat{B}A = B\widehat{A}E = y - x$ (equal angles of isosceles \triangle),

 $B\widehat{A}D = 2y = 180^{\circ}$ (supplementary angles),

 $y = 90^{\circ}$

 $B\widehat{C}D = 180^{\circ} - y = 90^{\circ}$.

 \therefore CD is a diameter (radius \perp tangent at the point of tangency).

Question 3

(a) Method 1:

Case 1: 3 different golfers receive prizes

 $\binom{5}{3}$ picks the golfers and then the prizes can be awarded in 3! ways ie $\binom{5}{3} \times 3! = 60$ ways.

Case 2: 1 golfer receives two prizes

Pick the golfer to receive the prize in $\binom{5}{1}$ ways and his prizes in $\binom{3}{2}$ ways.

Then the remaining prize can go to one of the 4 others

ie
$$\binom{5}{1} \times \binom{3}{2} \times \binom{4}{1} = 60$$
 ways

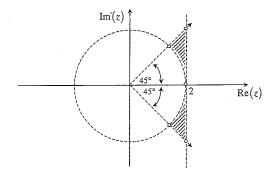
$$Total = 60 + 60 = 120$$

Method 2:

There are $5^3 = 125$ ways of dividing up the prizes with no restrictions. There are 5 ways in which a golfer can get all the prizes. So there are 125 - 5 = 120 ways in dividing up the prizes so that a golfer gets no more than 2 prizes.

(b)
$$\left|\arg z\right| < \frac{\pi}{4} \implies -\frac{\pi}{4} < \arg z < \frac{\pi}{4}$$

$$z + \overline{z} < 4 \implies x < 2$$



(i) LHS =
$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n$$

$$= \left(1 + i \frac{\sin \theta}{\cos \theta}\right)^n + \left(1 - i \frac{\sin \theta}{\cos \theta}\right)^n$$

$$= \left(\frac{\cos \theta + i \sin \theta}{\cos \theta}\right)^n + \left(\frac{\cos \theta - i \sin \theta}{\cos \theta}\right)^n$$

$$= \frac{\left[\operatorname{cis} \theta\right]^n + \left[\operatorname{cis} (-\theta)\right]^n}{\cos^n \theta}$$

$$= \frac{\operatorname{cis} n\theta + \operatorname{cis} (-n\theta)}{\cos^n \theta} \qquad \text{(deMoivre's Theorem)}$$

$$= \frac{2 \cos n\theta}{\cos^n \theta} \qquad (z + \overline{z} = 2 \operatorname{Re} z)$$

$$= \operatorname{RHS}$$

(ii)
$$(1+z)^4 + (1-z)^4 = \frac{2\cos 4\theta}{\cos^4 \theta} \text{ where } z = i\tan \theta \text{ from (i)}$$

$$(1+z)^4 + (1-z)^4 = 0 \Leftrightarrow \frac{2\cos 4\theta}{\cos^4 \theta} = 0$$

$$\therefore \cos 4\theta = 0$$

$$\therefore 4\theta = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$$

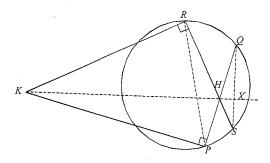
$$\therefore \theta = \pm \frac{\pi}{8}, \pm \frac{3\pi}{8}$$

$$\therefore z = i\tan \theta \Rightarrow z = i\tan \left(\pm \frac{\pi}{8}\right), i\tan \left(\pm \frac{3\pi}{8}\right)$$

$$\therefore z = \pm i\tan \left(\frac{\pi}{8}\right), \pm i\tan \left(\frac{3\pi}{8}\right)$$

$$[\because \tan(-x) = -\tan(x)]$$

(d) (i)



Join QS and produce KH to intersect with QS at X. Join \widetilde{RP}

(ii) PKRH is a cyclic quadrilateral (opposite angles are supplementary)

 $\angle PKH = \angle PRH$

(angles in the same segment)

 $\angle PRH = \angle PQS$

(angles in the same segment)

 $\therefore \angle PKH = \angle PQS$

 $\angle PHK + \angle PKH = 90^{\circ}$

 $(\because \angle KPH = 90^{\circ})$

 $\angle QHX = \angle PHK$

(vertically opposite angles)

 $\therefore \angle QHX + \angle PQS = 90^{\circ}$

 $(\because \angle PKH = \angle PQS)$

 $\therefore \angle QXH = 90^{\circ}$

(angle sum of Δ)

 $\therefore KH (produced) \perp QS$

If α is a real root of the equation $x^3 + ux + v = 0$ then $\alpha^3 + u\alpha + v = 0$

Now
$$x^3 + ux + v = (x - \alpha)(x^2 + Ax + B)$$

$$x^{2} + \alpha x + (u + \alpha^{2})$$

$$(x - \alpha))x^{3} + 0x^{2} + ux + v$$

$$x^{2} - \alpha x^{2}$$

$$(x - \alpha))0 + \alpha x^{2} + ux$$

$$\alpha x^{2} - \alpha^{2}x$$

$$(x - \alpha))0 + (u + \alpha^{2})x + v$$

$$\underline{(u + \alpha^{2})x - (u + \alpha^{2})}\alpha$$

$$0$$

$$v + (u + \alpha^{2})\alpha = 0$$

$$\therefore x^3 + ux + v = (x - \alpha) \left[x^2 + \alpha x + (u + \alpha^2) \right]$$

With $x^2 + \alpha x + (u + \alpha^2) = 0$ to have real roots then

$$\Delta = \alpha^2 - 4(u + \alpha^2) = -3\alpha^2 - 4u \ge 0$$

$$\therefore 3\alpha^2 + 4u \le 0$$