SYDNEY BOYS HIGH SCHOOL

EXTENSION 2 MATHEMATICS COURSE

July 2001

Assessment Task # 2

Time Allowed: 2 hours (plus 5 minutes Reading Time)

Examiner: Mr E Choy

INSTRUCTIONS:

- · Attempt all questions.
- All questions are of equal value.
- All necessary working should be shown in every question. Full marks may not be awarded if work is careless or badly arranged.
- Standard integrals are provided on the back of this page. Approved calculators may be used.
- Return your answers in 4 sections: Question 1, Question 2, Question 3 and Question 4. Each booklet MUST show your name.
- If required, additional Answer Booklets may be obtained from the Examination Supervisor upon request.

2 By using a suitable substitution find (a) $x\cos(\pi x^2) dx$ (b) Find $\int x^3 \ln x \, dx$ Find constants A, B, C such that Hence evaluate (d) By considering $\cos^2 x = 1 - \sin^2 x$, or otherwise evaluate (e) Using $x = \cos 2\theta$ show that $\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} \, dx = \pi$

Question 1

Question 1 is continued on the next page

Marks

Question 1 continued

Marks

5

(f) (i) Given that

$$I_{n,a} = \int \frac{dx}{(x^2 + a^2)^{n + \frac{1}{2}}}$$

Show that $I_{n,\sigma} = \frac{1}{d^{2n}} \int \cos^{2n-1} u \ du$

(ii) Hence, find $I_{2,1}$ leaving your answer in terms of x.

Section 2 (Start a new answer booklet)

Marks

10

(a) The diagram below represents the curve $f(x) = \frac{2x}{x^2 + 1}$

Sketch the following on separate number planes, without using calculus.

- (i) y = f(-x)
- (ii) y = f(|x|)
- (iii) |y| = f(x)
- (iv) y = f(2x)
- (v) $y \times f(x) = 1$
- (vi) $y = e^{f(x)}$
- (vii) $y = \max(f(x), \frac{1}{2})$, where $\max(a, b)$ is defined below:

$$\max(a,b) = \begin{cases} a \text{ if } a \ge b \\ b \text{ if } b \ge a \end{cases}$$

Question 2 is continued on the next page

Marks

(b) Sketch the graph over the interval $-3 \le x \le 3$ of the function which is defined for all $x \in \mathbb{R}$ by

$$\begin{cases} f(x) = x - \frac{1}{2} \text{ for } 0 \le x \le \\ f(-x) = f(x) \text{ for all } x \\ f(x+2) = f(x) \text{ for all } . \end{cases}$$

(c) Two students, A and B, were asked to find $\frac{dy}{dx}$ for the curve

$$\frac{x^2}{y} + y = 3$$

Student A worked at it directly, using the quotient rule and obtained the answer $\frac{2xy}{x^2-y^2}$.

Student B made life easier by multiplying through by y and the differentiating. B obtained the answer $\frac{2x}{3-2y}$.

Has somebody made a mistake or can the two solutions be reconciled?

(d) (i) Express in the form $rcis \alpha$

$$\frac{(\sqrt{3}i+1)^4}{(1-i)^3}$$

(ii) By considering $(1-i)^2$, show that

$$(1-i)^6 = 8i$$

Question 3 (Start a new answer booklet)

Marks

3

- (a) If $P(x) = 2x^4 20x^3 + 74x^2 120x + 72$ has two double roots, then factorise P(x).
- (b) A person wishes to make up as many different parties as he can out of 20 persons, each party consisting of the same number.
 - (i) How many should he invite?
 - (ii) To how many of these parties will the same person be invited?
- (c) (i) Express i and $(1+i)^n$ in mod-arg form
 - (ii) Simplify $cis\theta + cis(-\theta)$
 - (iii) Let M, N be positive integers. The polynomial $x^{M}(1-x)^{N}$ when divided by $1+x^{2}$ has a remainder of ax+b. Using the results from (i) and (ii) above, or otherwise, show that $a = \left(\sqrt{2}\right)^{N} \sin\left(\frac{(2M-N)\pi}{4}\right)$ and $b = \left(\sqrt{2}\right)^{N} \cos\left(\frac{(2M-N)\pi}{4}\right)$
- (d) A 200 g mass moving on a smooth horizontal surface encounters a resistance of $\frac{14\nu^3}{30}$ N when its speed is ν m/s. Show that its speed is reduced from $3\frac{1}{3}$ m/s to 1 m/s in a distance of 30 cm.
- (e) An object of mass m kg is thrown vertically upwards.
 Air resistance is given by R = 0.05mv² where R is in newtons and v ms⁻¹ is the speed of the object.
 (Take g = 9.8 ms⁻².)
 If the velocity of projection is 50 ms⁻¹, find the time taken to reach the highest point.

Question 4 (Start a new answer booklet)			Marks
(a)	(i)	Show that $2-i$ is a root of the equation $z^4-2z^3-z^2+2z+10=0$	5
	(ii)	Hence solve $z^4 - 2z^3 - z^2 + 2z + 10 = 0$	
(b)		Eight people are to be seated at a round table.	7
	(i)	In how many ways is this possible?	
	(ii)	In how many ways can the people be seated if two of the eight people must not sit in adjacent seats?	
	(iii)	If the eight people are four men and four ladies, how many ways can they be seated, if no two men are to be in adjacent seats?	
	(iv)	If the eight people are four married couples, how many ways can they seated if no husband and wife, as well as no two men, are to be in adjacent seats?	

Question 4 is continued on the next page

Question 4 continued

(c) Two circles touch externally at a point T.

A and B are points on the <u>first circle</u> such that AT = BT, and C and D are points on the second circle such that AC and BD meet at T.

Marks

- (i) Copy the diagram and include the information above.
- (ii) Prove that $\angle BAC = \angle ACD$
- (iii) Prove that ABCD is a trapezium with two equal sides.

The line BC cuts the first circle in V and the second circle in W, and the line AD cuts the first circle in U and the second circle in X.

(iv) Prove that the points U, V, W and X are concyclic.

THIS IS THE END OF THE PAPER

2001
HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK # 2

Mathematics Extension 2

Sample Solutions

(1) (a)
$$\int x \cos(\pi x^{2}) dx$$

$$du = \pi x^{2}$$

$$du = 2\pi x dx$$

$$= \frac{1}{2\pi} \int \cos(\pi x^{2}) x(2\pi x) dx$$

$$= \frac{1}{2\pi} \int \cos(\pi x) dx$$

$$= \frac{1}{2\pi} \int \sin(\pi x^{2}) x(2\pi x) dx$$

$$= \frac{1}{2\pi} \int \cos(\pi x) dx$$

$$= \frac{1}{2\pi} \int \sin(\pi x^{2}) x(2\pi x) dx$$

$$= \frac{1}{2\pi} \int \sin(\pi x^{2}) x(2\pi x) dx$$

$$= \frac{1}{2\pi} \int \cos(\pi x) dx$$

$$= \frac{1}{2\pi} \int \sin(\pi x^{2}) x(2\pi x) dx$$

$$= \frac{1}{2\pi} \int \cos(\pi x)$$

(d)
$$\int_{0}^{\frac{\pi}{8}} \frac{dx}{1+\sin x} = \int_{0}^{\frac{\pi}{8}} \left(\frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}\right) dx = \int_{0}^{\frac{\pi}{8}} \frac{(1-\sin x)}{1-\sin^{2} x} dx$$
$$= \int_{0}^{\frac{\pi}{8}} \sec^{2} x dx - \int_{0}^{\frac{\pi}{8}} \frac{\sin x}{\cos^{2} x} dx$$
$$= \tan \frac{\pi}{4} - \int_{0}^{\frac{\pi}{8}} \sec x \tan x dx$$
$$= 1 - (\sqrt{2} - 1) = 2 - \sqrt{2}$$

$$I(e) \int_{0}^{\frac{\pi}{4}} \sqrt{\frac{1-x}{1+x}} dx$$

$$\begin{bmatrix} x = \cos 2\theta \Rightarrow dx = -2\sin 2\theta d\theta = -4\sin\theta\cos\theta d\theta \\ x = -1 \Rightarrow \theta = \frac{\pi}{2}; x = 1 \Rightarrow \theta = 0 \\ 1 - \cos 2\theta = 2\sin^{2}\theta; 1 + \cos 2\theta = 2\cos^{2}\theta \end{bmatrix}$$

$$= \int_{\frac{\pi}{2}}^{0} |\tan\theta| \times (-4\sin\theta\cos\theta d\theta)$$

$$= 2\int_{0}^{\frac{\pi}{2}} 2\sin^{2}\theta d\theta \qquad \left[\because |\tan\theta| = \tan\theta \text{ for } 0 \le \theta \le \frac{\pi}{2} \right]$$

$$= 2\int_{0}^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta = 2\left[\theta - \frac{1}{2}\sin 2\theta\right]_{0}^{\frac{\pi}{2}}$$

$$= 2 \times \frac{\pi}{2} = \pi$$

1 f (i)
$$I_{n,a} = \int \frac{dx}{(x^2 + a^2)^{n + \frac{1}{2}}}$$

$$I_{n,a} = \int \frac{a \sec^2 \theta d\theta}{(a^2 \tan^2 \theta + a^2)^{n + \frac{1}{2}}}$$

$$= \int \frac{a \sec^2 \theta d\theta}{(a^2 \sec^2 \theta)^{n + \frac{1}{2}}}$$

$$= \int \frac{a \sec^2 \theta d\theta}{a^{2n+1} \sec^{2n+1} \theta}$$

$$= \frac{1}{a^{2n}} \int \frac{d\theta}{\sec^{2n-1} \theta}$$

$$= \frac{1}{a^{2n}} \int \cos^{2n-1} \theta d\theta$$
(ii)
$$n = 2, a = 1$$

$$I_{2,1} = \int \cos^3 \theta d\theta$$

$$= \int (\cos^2 \theta \times \cos \theta) d\theta$$

$$= \int (\cos \theta - \sin^2 \theta \cos \theta) d\theta$$

$$= \sin \theta - \int \sin^2 \theta \cos \theta d\theta$$

$$= \sin \theta - \int \sin^2 \theta \cos \theta d\theta$$

$$= \sin \theta - \int \sin^2 \theta d(\sin \theta)$$

$$= \sin \theta - \frac{1}{3} \sin^3 \theta + c$$

$$\therefore I_{2,1} = \frac{x}{\sqrt{1+x^2}} - \frac{x^3}{3(1+x^2)\sqrt{1+x^2}} + c$$

$$= \frac{x(3+2x^2)}{3(1+x^2)\sqrt{1+x^2}} + c$$

Let
$$x = a \tan \theta$$

$$\therefore dx = a \sec^2 \theta d\theta$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$x = \tan \theta$$

vertical asymptote at x=0

(3) (c) (i) $\hat{i} = c \sqrt{3} \frac{1}{2}$ 1+ $\hat{i} = \sqrt{2} (i \sqrt{3})^{n} = (\sqrt{2})^{n} (i \sqrt{3})^{n} (i \sqrt{4})$ (0.M.T.)
(ii) (ii0+ (i)(-0) < 21050 (2+1=2RQZ)
$(iii) \chi^{M}(1-\chi)^{N} = (i+\chi^{2}) \mathcal{Q}(\chi) + a\chi + b$
sub $x = i$: $i^{M}(i-i)^{N} = 0 + ai+b$ $i = (i^{M})^{N} \times (f_{2})^{N} (i)(-\frac{NT}{4}) = ai+b$
$\int_{-\infty}^{\infty} (\sqrt{2})^{N} \operatorname{cir}(\frac{\sqrt{M}}{2} - \frac{\pi}{4}) = (\sqrt{2})^{N} \operatorname{cir}(\frac{(2M - N)^{T}}{4}) = a \mathbf{i} + b - (1)$
$\frac{\operatorname{sub} x = -i}{\operatorname{cij} \left(-\frac{MT}{2}\right) \times \left(\sqrt{2}\right)^{N} \operatorname{cij} \left(\frac{MT}{4}\right) = -\operatorname{aitb}}$ $\frac{\operatorname{sub} x = -i}{\operatorname{cij} \left(-\frac{MT}{2}\right) \times \left(\sqrt{2}\right)^{N} \operatorname{cij} \left(\frac{MT}{4}\right) = -\operatorname{aitb}}$
$(\sqrt{2})^{N} \operatorname{ris} \left(\left(-\frac{2M+N}{4} \right) \pi \right) = -\operatorname{dit} b$
$i\cdot (\sqrt{2})^{N}\operatorname{cis}\left(-\left(\frac{2M-N}{4}\right)^{T}\right)=-\operatorname{qu}tb \qquad -(2)$
$(1) + (2) : \Rightarrow 2b = 2 \cdot (\sqrt{2})^{N} (0) \left(\frac{2M - N}{4}\right)^{T}$
$\Rightarrow b = (\sqrt{2})^{N} (os (\frac{2M-N}{4})) T$
(1) - (2) := $-2ai = 2i(\sqrt{2})^N \sin(\frac{2M-N}{4}) \pi$ $(2-\overline{2}=2i)m = 2$
$\alpha = \left(\sqrt{2}\right)^{N} \sin\left(\frac{2M-N}{4}\right) \pi$

```
(3) (d)
     0.2 \quad \mathring{x} = -\frac{14v^3}{30} = -\frac{7}{15}
         take x=0, v=\frac{10}{3} \Rightarrow c=\frac{4}{70}
               x = \frac{3}{7} \cdot \frac{1}{70}
when y = 1, x = \frac{3}{7} \times 1 - \frac{9}{10} = 0.3 \text{ m} = 30 \text{ cm}
velocity goes from -33 m/s to im/s in 30 cm
   (e) 1 + \frac{1}{2} \frac{1}{2} = -(g + \frac{1}{20})^2 = \frac{1}{20}(20g + v^2)
                       \frac{dV}{dt} = -\frac{1}{20} \left( 209 + V^{2} \right) = -\frac{1}{20} \left( 196 + V^{2} \right)
                   : t = \int_{1}^{\infty} \frac{-20}{196+v^2} dv = \frac{-20}{14} \int_{1}^{\infty} \frac{14}{196+v^2} dv = \frac{-20}{14} tan^{-1} (\frac{V}{14}) + C
```

4(a) (i) If 2-i i a root then x - (2-i) and x - (2+i) are factors (real coeff.) : [x-(1-i)][x-(1+i)] = x2-4x+5 11 a factor 21 + 22 + 2. 22-42+5 124-223-21+22+10 24 -423 +522 L 22-42+5) 223 -622 + 22 + 10 223 -822 +102 22-42+5 -22 -82 +10 222 - 87 + 10 \$ 22-42+5 i) a factor > ≥=2-i i) a root 2+1+2 = (++1)+1 roots ave == 2±i,-1±i (b) 8 people (i) 7! = (ii) I. Put them in adjacent reats. call them A & B :. 7 "objects" around the circle : 6! x2! = 1440 => M(AB not together) = 7! - 6! x2 seat a woman first = 5×6! តច) . 3!x4! = . Let the women be W1, W2, W3, W4 . seat the wowendown first (3!) Then 2 choice for men blw wie W2 thu then lock in the remaining men . 3! ×2 = 12

(c)

- $\angle BAC = \angle BTE$ (alternate segment theorem) $\angle BTE = \angle DTF$ (vertically opposite angles) $\angle DTF = \angle ACD$ (alternate segment theorem)
- $\therefore AB \parallel CD$ (alternate angles are equal) $\Rightarrow ABCD$ is a trapézium and $\triangle DTC$ is $\triangle ATD \equiv \triangle BTC \text{ (SAS)} \Rightarrow AD = BC \& \angle ADC = \angle BCD \text{ .}$
- (iv) ABCD is a cyclic quad (ABCD is an isosceles trapezium) WXCD and ABUV are cyclic quads too. Let $\angle BCD = x \Rightarrow \angle UXW = x$ (exterior angle of a cyclic quad). As well $\angle BAC = x$ (opposite angles in a cyclic quad ABCD) $\therefore \angle BVU = x$ (opposite angles in a cyclic quad ABUV) $\therefore \angle BVU = \angle UXW = x$ Hence UVWX is a cyclic quad since the exterior angle of the quad is equal to the

opposite interior angle.