

Year 10

Yearly Examination 2013

Advanced

General Instructions

- Working time 120 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- Marks may not be awarded for untidy or badly arranged work
- All answers should be given in simplest exact form unless specified otherwise
- If more space is required, clearly write the number of the QUESTION on the back page and answer it there. Indicate that you have done so
- Clearly indicate your class by placing an X, next to your class

Mathematics

Examiner: A. Fuller

Total Marks - 118

- Attempt questions 1 −·7
- Each question has 5 multiple choice, followed by extended response.
- CIRCLE the correct answer for the multiple choice. (A), (B), (C) or (D)
- Extended response should include relevant mathematical reasoning and/or calculations.

3	
NAME:	
	· · · · · · · · · · · · · · · · · · ·

Class	Teacher	
10 A	Mr Boros	
10 B	Ms Ward	
10 C	Ms Millar	
10 D	Ms Nesbitt/Ms Likourezos	
10 E	Mr Hespe	
10 F	Mr Elliott/Ms Chen	
10 G	Mr Gainford	

Question	Mark
1	/18
2	/18
3	/18
4	/18
5	/16
6	/15
7	/15
Total	/118

Question One (18 marks)

(a) Which graph illustrates the solution of -3x > 6?

(b) The bearing of P from Q is

- (A) 040°
- (B) 050°
- (C) 130°
- (D) 310°

(c) If P(x) is of degree m and Q(x) is of degree n, where m > n. $P(x) \times Q(x)$ is of degree:

- (A) m
- (B) m+n
- (C) $m \times n$
- (D) n

(d)

- (A) $m = v \sin \alpha$
- (B) $v = m \sin \alpha$
- (C) $m = v \cos \alpha$
- (D) $v = m \cos \alpha$

Which expression shows the product of p factors, each of which is m?

- (A) pm
- (B) pm
- (C) m^p
- (D) p+m

(j)

(f) $P(x) = 2x^2(2x-7)(2x+7)$.

[2]

- (I) What is the leading coefficient?
- (II) What is the constant term?
- (g) Circle the expressions which are polynomials:

$$3x + \frac{1}{x}$$
, $6x^5 + \sqrt{5}x$,

$$2^{x} + 1$$
,

$$x^3 + x\sqrt{x}$$

(h) Solve the following:

[1]

(I) $x^2 - 9 = 0$

(II)
$$x^2 - 5x + 4 = 6$$

(MI)
$$3x^2 - 5x + 2 = 0$$

Find a quadratic equation in the form $x^2 + bx + c = 0$ which has

solutions
$$x = -1$$
 and $x = 3$,

- (I) Calculate the volume of this solid hemisphere in cubic units.
- (II) Calculate the surface area of this solid hemisphere in square units.

$$AB = BC, \angle ABC = 2x^{\circ}, \angle BCD = 5x^{\circ}$$

(I) Find the size of $\angle ACB$ in terms of x (no reasons required)

(II) Hence, or otherwise, find the value of x.

Question Two (18 marks)

- What is the gradient of the line 2x 3y + 7 = 0?
 - (A) $-\frac{3}{2}$ (B) $-\frac{2}{3}$ (C) $\frac{3}{2}$
- (D) $\frac{2}{3}$

- $9x^2 4y^2 =$
 - (A) $(3x-2y)^2$

- (B) $(9x 4y)^2$
- (C) (3x-2y)(3x+2y)
- (D) (9x-4y)(9x+4y)
- Which region satisfies both $x y \le -3$ and $x + y \ge 3$?

- (A) A
- (B) B
- (C) C
- (D) D

Which expression gives the area of ΔPQR ?

- $\frac{1}{2} \times 8 \times 8 \times \cos 70^{\circ}$
- (B) $\frac{1}{2} \times 8 \times 8 \times \sin 70^{\circ}$
- (C) $\frac{1}{2} \times 8 \times 8 \times \sin 40^\circ$
- (D) $\frac{1}{2} \times 8 \times 8 \times \cos 40^{\circ}$
- Solve for x: $2x^2 5x 1 = 0$
 - (A) $x = \frac{5 \pm \sqrt{17}}{4}$

- (C) $x = \frac{5 \pm \sqrt{33}}{4}$
- (D) $x = \frac{-5 \pm \sqrt{33}}{4}$

Question Two (continued)

- What is the remainder when $x^3 5x^2 + 2x + 5$ is divided by x 2? [1]
- \$1200 is invested for 10 years compounded annually at 4% p.a. [3]
 - What is the final value of the investment?

- How much interest is earned in the 10 years?
- What is the equivalent simple interest rate?
- What is the equation of the axis of symmetry of the parabola [1] $y = x^2 - 6x + 10$?
- P(x) = 2x + 5 and $Q(x) = x^3 7x + 4$. Find: [2]
 - P(x) Q(x)
 - $P(x) \times Q(x)$

(j) Simplify
$$\frac{1}{x+2} + \frac{1}{x}$$

[2]

$$(1) \qquad x + 2y = 2$$

$$(II) y = 2x^2$$

(III)
$$y = 2^{-x}$$

(IV)
$$xy = 2$$

Question Three (18 marks)

- (a) Here are two statements:
 - $1. x^2 = 9x \text{ has 2 solutions}$
 - II. $x^2 = 9$ has 2 solutions

Which must be true?

(A) I only

(B) II only

(C) I and II

(D) Neither I nor II

(b)
$$(\sqrt{5} - \sqrt{3})^2 =$$

- (A) 2
- (B) $2 2\sqrt{15}$
- (C) 8
- (D) $8 2\sqrt{15}$
- (c) Convert 0.0035 cubic metres into cubic centimetres.
 - (A) 0.35
- (B) 3.5
- (C) 35
- (D) 3500

 $(d) \qquad \frac{k}{g} = ?$

- (A) $\frac{\sin 50}{\sin 50}$
- B) $\frac{\sin 60^{\circ}}{\sin 60^{\circ}}$
- (C) $\frac{\sin 5}{100}$
- $O) = \frac{\sin 60^{\circ}}{\sin 70^{\circ}}$

(e)

The centre of the circle is O. XY is a tangent to the circle at B. $\angle BOA = 80^{\circ}$.

The size of \(\angle ABY \) in degrees is

- (A) 10
- (B) 40

(C) 50

(D) 80

Question Three (continued)

(f) Write down the equation of the following curves.

[2]

[1]

[2]

(You may leave the equation in factored form)

(l)

(II)

(g) What value of x would give a mean of 7 for the scores in this frequency

distribution table?

Score	Frequency
6	х
9	7

(h) Find the value of x correct to one decimal place.

(i) What single percentage decrease has the same effect as three successive 10% reductions?

[2]

(j) Solve $x^2 + 4x - 1 = 0$ by completing the square. [2]

k) $P(x) = x^3 + 2x^2 - 11x + 25$ and A(x) = x + 5. [3] Find $P(x) \div A(x)$, and hence, express P(x) in the form $A(x) \times Q(x) + R$

Daniel's piano is currently valued at \$8800. Its value depreciates at the rate [1] of 7.5% p.a. What will be the value of his piano in 2 years time?

Question Four (18 marks)

- What is 0.050143 correct to three significant figures?
 - (A) 0.05
- (B) 0.050
- (C) 0.0501 .
- (D) 0.05014
- O is the centre of each circle. In which diagram does θ equal 80° ?

- If a < b < 1 then which of the following statements is always true?
- (B) -a > -b (C) $b^2 > a^2$ (D) $b^2 > ab$

- If $\sqrt{A} = n$, then 2A =(d)
 - (A) $2\sqrt{n}$
- (B) $\sqrt{2n}$
- (C) $2n^2$
- (D) $4n^2$
- The same class sat for tests in English, Mathematics and Science. Eric's results are (e) shown below:

TEST	CLASS	CLASS STANDARD	ERIC'S	
	MEAN	DEVIATION	MARK	
ENGLISH	75	5 .	80	
MATHEMATICS	55	15	80	
SCIENCE	60	10	80	

- In which test did Eric perform best, compared to the rest of his class?
- (A) English

(B) Mathematics

(C) Science

(D) He performed as well in all three tests

Question Four (continued)

[2] Solve the following equations simultaneously: 3x + 2y = 7, x - y = 4

- For the set of scores: 27, 28, 28, 33, 34, 38, 41, 43, 46, 52, 55, 56. [2] Calculate:
 - the range
 - the inter-quartile range
- O is the centre of the circle. OA is parallel to CB. [3] Find the size of $\angle OAC$ giving reasons.

(i)

PQ and RS are straight lines. O is the centre of the circle. Find the value of x (giving reasons)

(j) AB is a tangent. BC = 3 cm, CD = 4 cm. Find the exact length of AB (no reasons required)

[2]

[1]

(k) The graph of y = f(x) is given below.

Sketch the following (on the axes provided):

(I)
$$y = -f(x)$$

$$(\Pi) \quad y = f(x) - 1$$

(III)
$$y = f(x-1)$$

(I)

[3]

(II)

y

1

-4 -3 -2 -1 0 1 2 3 4

Question Five (16 marks)

(a) $\sin \theta = ?$

- (A) $-\frac{4}{5}$
- (B) $-\frac{3}{6}$
- (C)
- (D)

(b)

The diagram shows a circular running track, *I* metre wide. Two athletes circle the track once. One athlete runs on the inside line and the other on the outside line. What is the difference between the distances run by each athlete?

- (A) It depends on the radius of the track
- (B) 1 m

(C) π m

- (D) 2π m
- (c) Rationalize the denominator of $\frac{I}{\sqrt{7}-2}$.
 - (A) $\frac{\sqrt{7}-2}{3}$

(B) $\frac{\sqrt{7}+2}{3}$

(C) $\frac{\sqrt{7}-2}{5}$

- (D) $\frac{\sqrt{7}+2}{5}$
- (d) If x: y = 1: 2 and x: z = 3: 5 then y: z = ?
 - (A) 2:5
- (B) 3:10
- (C) 5:6
- (D) 6:5
- (e) A steel cube with side length 3cm has a mass of 210.6 g.

What is the mass of $1cm^3$ of this steel?

- (A) 7.8g
- (B) 23.4g
- (C) 35.1g
- (D) 70.2g

Question Five (continued)

(f) Simplify

$$\frac{1-\frac{2}{x+1}}{x-\frac{2}{x+1}}$$

[3]

[3]

- (g) The heights of two similar figures are 1.6m and 1.8m.
 - If the volume of the smaller figure is $10.08m^3$. Find the volume of the larger figure.

(II) If 800mL of paint is needed to give the smaller figure two coats of paint.
How much is required to give the larger figure two coats of paint?

(h)
$$P(x) = x^3 - x^2 - 16x - 20$$
.

[3]

[2]

Show that x + 2 is a factor of P(x).

Hence, or otherwise, solve P(x) = 0.

AT is a tangent to the circle at T. AC cuts the circle at B. TA = TC. (i)

If $\angle ATB = x^o$, prove that $\angle CBT = 2x^o$.

Question Six (15 marks)

What is the ratio of the volume of the cylinder to the volume of the cone?

- (A) 1:36
- (B) 1:12
- (C) 1:6
- (D) 1:2
- P(a, b) is in the first quadrant (ie. a > 0, b > 0). (b)

Q(c, d) is in the third quadrant (ie. c < 0, d < 0).

The midpoint of PQ is

(A)
$$(\frac{a+b}{2}, \frac{c+d}{2})$$

(B)
$$(\frac{c-a}{2}, \frac{d-b}{2})$$

(C)
$$(\frac{a-c}{2}, \frac{b-d}{2})$$

(D)
$$(\frac{a+c}{2}, \frac{b+d}{2})$$

Make G the subject of the formula $E = 1 - \sqrt{\frac{G}{R}}$.

(A)
$$G = R(1+E)^2$$

(B)
$$G = R(I + E^2)$$

(C)
$$G = R(1 - E^{l})$$

(D)
$$G = R(1 - E)^2$$

(d)

The graph shows $y = x^4$ and 2y = x + 2 intersecting at P and Q.

The x values at P and Q are the solutions of

(A)
$$x^4 - x - 2 = 0$$

(B)
$$x^4 + x + 2 = 0$$

(C)
$$2x^4 + x + 2 = 0$$

(D)
$$2x^4 - x - 2 = 0$$

(e) Three students are playing a game. They each toss a coin at the same time. A winner is declared if only one student tosses a head.

What is the probability that a winner is declared?

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{6}$

B)
$$\frac{1}{6}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{3}{8}$$

(f) Factorise x(x-1) - y(y-1)

[2]

(g) In the diagram ABCD is a rectangle and AB = 2AD. The point M is the midpoint [5] of AD. The line BM meets AC at X.

(I) Show that the triangles AXM and BXC are similar.

(II) Show that 3CX = 2AC.

(III) Show that $9(CX)^2 = 5(AB)^2$.

(h) Two circles touch externally at R. ST is a common tangent.

[3]

The common tangent at R meets ST in X.

Prove that $\angle SRT$ is a right angle.

Question Seven (15 marks)

(a)

Which triangle below must be congruent to triangle PQR?

- (b) The mean and standard deviation of a set of test scores are m and s respectively.
 If 4 marks are added to each score, what are the mean and standard deviation of the new set of scores?
 - (A) Mean = m, Standard Deviation = s
 - (B) Mean = m + 4, Standard Deviation = s
 - (C) Mean = m, Standard Deviation = s + 4
 - (D) Mean = m + 4, Standard Deviation = s + 4
- (c) Which of the following triangles has the greatest area? With sides:
 - (A) 3, 4, 3
- (B) 3, 4, 4
- (C) 3, 4, 5
- (D) 3, 4, 6

(d) The net of a die is shown below.

The faces are numbered 1, 2, 3 and 4. The die is rolled twice. The number on the face that the die lands on is recorded each time. Find the probability that the sum of the two recorded numbers is 4.

- (A) $\frac{1}{16}$
- (B) $\frac{I}{8}$

- (C) $\frac{3}{16}$
- (D) $\frac{1}{4}$
- (e) Each of the numbers 1, 2, 3, 4 is assigned, in some order p, q, r, s. What is the largest value of $p^q + r^s$
 - (A) 12
- (B) 19

- (C) 66
- (D) 83

Question Seven (continued)

(f) The incircle of a triangle is the circle that is inscribed inside the triangle such that it touches each side of the triangle.
 Find the radius, r, of the incircle of a triangle with sides 3 cm, 4cm and 5 cm.

(g) 100 tickets are sold in a raffle. A ticket is drawn for first prize and then discarded. A second ticket is drawn for second prize, discarded and so on until all prizes have been given out.

If Andy has 2 tickets in the raffle:

(I) What is the probability of Andy winning 2nd prize?

[1]

(II) How many prizes are needed for Andy to have (at least) a 50% chance [3]
of winning a prize?

(h) What is the minimum value of 4^{x^2+x} in simplest exact form?

[3]

Use this space if you wish to rewrite any answers.

Clearly indicate the Question number.

Question One (18 marks)

Which graph illustrates the solution of -3x > 6?

The bearing of P from Q is

- (A) 040°
- (B) 050°
- (C) 130°
- 310°

(c) Let P(x) is of degree m and Q(x) is of degree n, where m > n. $P(x) \times Q(x)$ is of degree:

- (C) $m \times n$

(d)

- (A) $m = v \sin \alpha$
- (B) $v = m \sin \alpha$ (C) $m = v \cos \alpha$
- (D) $v = m \cos \alpha$.

Which expression shows the product of p factors, each of which is m?

- (A) pm
- (B) p^m
- (D) p+m

Question One (continued)

(f)
$$P(x) = 2x^2(2x-7)(2x+7)$$
.

[2]

What is the leading coefficient?

What is the constant term?

Circle the expressions which are polynomials:

$$3x + \frac{1}{x}$$
, $6x^5 +$

$$2^{x} + 1$$
,

$$x^3 + x\sqrt{x}$$

Solve the following:

[4]

$$(1) \quad x^2 - 9 = 0 \\ (\chi - 3)(7c + 3) = 0 \quad \chi = -3, 3$$

$$\chi = -3$$

(II)
$$x^2 - 5x + 4 = 0$$

 $(\chi - 4)(\chi - 1) = 0$ $\chi = 1 + 4$

$$(3n-2)(n-1)=0 \quad n=\frac{2}{3}, 1$$

Find a quadratic equation in the form $x^2 + bx + c = 0$ which has [1]

solutions
$$x = -1$$
 and $x = 3$.
 $(\mathcal{K}-3)(\mathcal{K}+1) = 0$ $\mathcal{K}^2-2\mathcal{K}-3=0$

Calculate the volume of this solid hemisphere in cubic units.

Calculate the surface area of this solid hemisphere in square units.

AB = BC, $\angle ABC = 2x^{\circ}$, $\angle BCD = 5x^{\circ}$

Find the size of $\angle ACB$ in terms of x (no reasons required) Bn=180

Hence, or otherwise, find the value of x.

Question Two (18 marks)

- What is the gradient of the line 2x 3y + 7 = 0?

 - (A) $-\frac{3}{2}$ (B) $-\frac{2}{3}$
 - (C) $\frac{3}{2}$

- $9x^2 4y^2 =$
 - (A) $(3x 2y)^2$

(B) $(9x - 4y)^2$

- $\widehat{(C)}$ (3x 2y)(3x + 2y)
- (D) (9x 4y)(9x + 4y)
- Which region satisfies both $x y \le -3$ and $x + y \ge 3$? (c)

- (A) A
- (B) B
- (C) C

Which expression gives the area of ΔPQR ?

- (A) $\frac{1}{2} \times 8 \times 8 \times \cos 70^{\circ}$
- (B) $\frac{1}{2} \times 8 \times 8 \times \sin 70^{\circ}$
- (C) $\frac{1}{2} \times 8 \times 8 \times \sin 40^{\circ}$
- (D) $\frac{1}{3} \times 8 \times 8 \times \cos 40^{\circ}$
- Solve for x: $2x^2 - 5x - 1 = 0$

(A)
$$x = \frac{5 \pm \sqrt{17}}{4}$$

(B)
$$x = \frac{-5 \pm \sqrt{17}}{4}$$

$$(C) x = \frac{5 \pm \sqrt{33}}{4}$$

(D)
$$x = \frac{-5 \pm \sqrt{33}}{4}$$

(f) What is the remainder when
$$x^3 - 5x^2 + 2x + 5$$
 is divided by $x - 2$? [1]

$$2^{3}-5(2^{7}+2(2)+5=$$

What is the final value of the investment?

$$|200(1+0.04)^{\circ}|$$
= $|\$1776.29|$

How much interest is earned in the 10 years?

What is the equivalent simple interest rate?

What is the equation of the axis of symmetry of the parabola

$$y = x^2 - 6x + 10?$$

$$\chi = \frac{b}{2a}$$

$$x=3$$

P(x) = 2x + 5 and $Q(x) = x^3 - 7x + 4$. Find:

(I)
$$P(x) - Q(x)$$

= $1 + 9 \times - x^3$

(II)
$$P(x) \times Q(x) = (2x+5)(x^3-7x+4)$$

= $2x^4 - (4x^2+8x+5x^3-35x+20)$

Simplify
$$\frac{1}{x+2} + \frac{1}{x}$$

$$= \frac{3(.+x+2)}{x(x+2)}$$

$$= \frac{2x+2}{x(x+2)}$$

$$= \frac{2(x+1)}{x(x+2)}$$

x + 2y = 2

Sketch the following (on the axes provided):

$$(II) y = 2x^2$$

(III)
$$y \approx 2^{-x}$$

(IV)
$$xy = 2$$

[2]

[4]

[2]

Question Three (18 marks)

(a) Here are two statements:

I.
$$x^2 = 9x$$
 has 2 solutions $z(z-9) = 0$

II. $x^2 = 9$ has 2 solutions $x = \pm 3$

Which must be true?

(A) I only

(B) II only

(C) I and II

- (D) Neither I nor II
- (b) $(\sqrt{5}-\sqrt{3})^2 = 5-2\sqrt{15}+3$
 - · (A) 2
- (B) $2 2\sqrt{15}$
- (C) 8
- (D) $8 2\sqrt{15}$
- (c) Convert 0.0035 cubic metres into cubic centimetres. 0.0035 x 1003
 - (A) 0.35
- (B) 3.5
- (C) 35
- (D) 3500

(d) $\frac{k}{g} = ?$

- $(A) \qquad \frac{\sin 50^{\circ}}{\sin 60^{\circ}}$
- $(B) \frac{\sin 6}{\sin 5}$
- (C) $\frac{\sin 50}{\sin 70}$
- (D) $\frac{\sin 6}{\sin 7}$

(e)

The centre of the circle is O. XY is a tangent to the circle at B. $\angle BOA = 80^{\circ}$.

The size of \(\alpha BY \) in degrees is

- (A) 10
- (B) 40

(C) 50

(D) 80

Question Three (continued)

(f) Write down the equation of the following curves.

[2]

(You may leave the equation in factored form)

(II) y

(g) What value of x would give a mean of 7 for the scores in this frequency distribution table?

Score	Frequency	6x+63 =7
б	х	×+7
9	7	6x+63 = 7x+49
		x= 14

(h) Find the value of x correct to one decimal place.

x2=7492-2×7×9×cos128° ≈ 207.573 > xx 14.44

(i) What single percentage decrease has the same effect as three successive [2] 10% reductions?
$$(0.9)^3 = 0.729$$

(j) Solve
$$x^2 + 4x - 1 = 0$$
 by completing the square.

$$x^2 + 4x + 4 = 1 + 4$$

$$(x + 2)^2 = 5$$

$$x + 2 = \pm \sqrt{5}$$

$$x = -2 \pm \sqrt{5}$$

(k)
$$P(x) = x^3 + 2x^2 - 11x + 25$$
 and $A(x) = x + 5$. [3]

Find $P(x) \div A(x)$, and hence, express P(x) in the form $A(x) \times Q(x) + R$

of 7.5% p.a. What will be the value of his piano in 2 years time?

$$Value = $8800 (1 - \frac{75}{100})^{2}$$

$$= $7529.50$$

Question Four (18 marks)

- (a). What is 0 · 050143 correct to three significant figures?
 - (A) 0·05
- (B) 0.050
- 0.0501
- (D) 0·05014
- b) O is the centre of each circle. In which diagram does θ equal 80 ?

(c) If a < b < 1 then which of the following statements is always true?

(A)
$$\frac{1}{a} > \frac{1}{b}$$
 (B) $1-a > 1-b$ (C) $a+1 > b-1$ (D) $a-1 > b+1$

- (d) If $\sqrt{A} = n$, then 2A =
 - (A) $2\sqrt{n}$
- (B) $\sqrt{2n}$
- (C) $2n^2$
- (D) $4n^2$
- (e) The same class sat for tests in English, Mathematics and Science. Eric's results are shown below:

TEST	CLASS	CLASS STANDARD	ERIC'S	7
	MEAN	DEVIATION	MARK	
ENGLISH	75	5	80	-
MATHEMATICS	55	15 -	- 80	k
SCIENCE	60	. 10	80	

In which test did Eric perform best, compared to the rest of his class?

(A) English

(B) Mathematics

(C) Science

(D) She performed as well in all three tests

Solve the following equations simultaneously:

$$3x + 2y = 7, x - y = 4$$

For the set of scores: 27, 28, 28, 33, 34, 38, 41, 43, 46,

Calculate:

56-27 the range

the inter-quartile range

O is the centre of the circle. OA is parallel to CB.

[3]

Find the size of $\angle OAC$ giving reasons.

PQ and RS are straight lines. O is the centre of the circle.

Find the value of x (giving reasons)

of the value of
$$x$$
 (giving reasons)

$$fSR = 180 - x \quad (cyclic quad PRQS)$$

$$fSR = 70^{\circ} \quad (fSQ = 90^{\circ} - LIN Semicric)$$

[2]

[1]

AB is a tangent. BC = 3 cm, CD = 4 cm.

Find the exact length of AB (no reasons required)

(k) The graph of y = f(x) is given below.

Sketch the following (on the axes provided):

(1)
$$y = -f(x)$$

(II)
$$y = f(x) - 1$$

(III)
$$y = f(x-1)$$

(I)

[3]

(II)

y

1

-4 -3 -2 1 0 1 2 '3 4 x

Y10 Yearly Question	5 - Solu	<u>tions</u>
a) $\sin \theta = \sin (180 - 10)$ = $\frac{4}{5}$	9) (D)	1 + 10
		$\frac{\alpha - 2}{\alpha + 1}$
b) inner circle: C =	2π <u>r</u>	$= \frac{x+1-2}{x+1} \cdot \frac{x(x+1)-2}{x+1}$
outer circle: C = 277 = 272	(r+1) r+277	$= \frac{\alpha - 1}{\alpha + 1} \times \frac{\alpha + 1}{\alpha^2 + \alpha - 2}$
difference: outer - in	nec	$\frac{2 - x - 1}{(x + 2)(x - 1)}$
= 271r + 270 - 27 = 270 m	1 - 1	<u> </u>
		$\frac{\alpha+2}{\alpha+2}$
(c) $\sqrt{7+2}$ $\sqrt{7+2}$		g) hs=1.6m, hz=1.8m
$= \frac{\sqrt{7} + 2}{\sqrt{7} - 4}$ $= \sqrt{7} + 2$	(B)	$\frac{(1) \text{ Volume}_{b} = 1.8^{3}}{\text{Volume}_{s} = 1.6^{3}}$
3		volumer = 1.83 10.08 m ³ 1.63
d) $\alpha: y = 1:2, \alpha:$ $\Rightarrow \alpha: y = 3:6$	Z = 3:5	volume = 1.83 x 10.08
	(D)	$= 14.35 \text{ m}^3$
$y: \overline{z} = 6:5$, ,	(2.d.p)
e) = 210.0	6 g	$(II.) \frac{Area_{L}}{Area_{S}} = \frac{1.8^{2}}{1.6^{2}}$
3 cm		Area. = 1.8^2
$1.27 \text{ cm}^3 = 210.6$		800mL 1.62 Area = 1.82 x 800m
⇒ 1 cm³ = 7.8 g		, - · · - · · - · · - · · - · · · ·
J	,	= 1012.5 mL for 2 coats,

	Section of the sectio
$h) P(x) = x^3 - x^2 - 16x - 20$	
(I) $P(-2) = (-2)^3 - (-2)^2 - 16(-2) - 20$	
= -8 - 4 + 32 - 20	
$\therefore As p(-2) = 0 \alpha + 2 \text{ is a factor.}$	
113 1 (L) 2 0 0 1 L 13 01 1 UC 1 U	
$(II) \qquad \qquad \chi^{i} - 3\chi - 10$	
$\frac{x+2)x^3-x^2-16x-20}{x^3+2x^2}$	
$\frac{x^2+2x}{-3x^2-16x}$	1
$-3x^2-6x$	
- 1006 - 20	
$\frac{-10x - 20}{0}$	
$P(x) \Rightarrow (x+2)(x^2-3x-10)=0$	
$(x+2)(x-5)(x+2)=0$ $\therefore x=-2,5$	
i) LTCB = x° (angle between a tangent and a chord drawn to the point of contaction is equal to the angle in alternate	
chord drawn to the point of contact	t
segment)	2)
<u> </u>	S
$\angle CAT = x^{\circ}$ (matching base angles in an isosceles	
triangles)	(A)
∠ cBT = x'+x'	
= 2x° (exterior angles of a A is equal to	
sum of the two opposite interior	
angles).	

on the large to the winder used from the control of

(a) D.		Secretaria de la companya de la comp	- The sale of the North	nomes were and resident			Sa esta esta esta esta esta esta esta est		
100 a f. contact rnate isosceles isosceles					9		(A)	9 9 9	6
D. D. AMM & ASKC (School of Contact rnate isosceles isosceles isosceles	· · · · · ·								
10d a 10d			80 1		5 "	1 1 1 1	X		
10d a 10d	· · · · · · · · · · · · · · · · · · ·		7	1 A X C	S B R	K. K.			
Societies Soci			A X	n a		6 8			
Ind a			3 1	100					
Ind a			34			(4)	(c)		
Ind a	· 		Š ,		184	14 (t			
Ind a f contact rnate isosceles Acc Cx + x x x	· · · · · · · · · · · · · · · · · · ·			A LA		(c) [j			
and a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccc$						$M \sqcup$			
and a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccc$			20	1818]				1 1 1 1 1
Ind a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8	114					
Ind a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(B) =	85 3		1 1			
Ind a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6	1 1 1 1-1	[]				
Ind a f contact rnate isosceles $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5	at Sta]				
and a f contact rnate isosceles			44	PAS (
Ind a f contact rnate isosceles isosceles				FM E)			7 9 9	Θ
Ind a f contact rnate isosceles isosceles									1114
isosceles ind a f contact									
isosceles The control of the cont	and a								177
isosceles The content of the cont	f contact				ลี 🕕	ا ا ا	,	Φ <u>λ</u>	$ V_{\lambda} $
isosceles Solution Solution	rnate								
isosceles	J. 11Y(1.\c.	[] [p.		6	H II	น เม			11/1 NII
isosceles		1 2 L	1 1 1	F 20	(a) } ₂	$\mathfrak{g} \mid \mathfrak{g}$	XX	K by	
	isasceles	170	\uparrow \not \downarrow \downarrow	7 8	6] [.]		M- 3	1	03 8 8
		; ; ; ; 1 X					\ \times \ \ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	w-	
		नि						1 1 1	
								以图	
interior Axially axc.	eaual to								
responding similar associated aso	interior							46	
ponding Alexander	en konskultu 💓 for dredt		.					Yes	
	· · · · · · · · · · · · · · · · · · ·							<u>€</u> 68	
			(b)	}			\emptyset	XX Z	
							<u>M</u> [K.R.	

