

Name:	***************************************	••••
Teacher	•••••	••••

HSC Assessment 1 18 November, 2003

Mathematics

General Instructions

- Time allowed: 60 minutes
- Weighting 15%
- This paper has **four** questions
- Attempt all questions and show all necessary working
- Marks will be deducted for careless or badly arranged work
- Write using blue or black pen, diagrams in pencil
- Start each question a new page
- Write your name and your teacher's name at the top of each page
- Approved calculators, mathematical templates and geometrical instruments may be used

Questions	Marks	Communication		Reasoning		Calculus	
1	1 /10					(c)	4 15
. 2	5/10	(c) iii)	0 /2	(b)	2 /2	(c) i) ii)	J /4
3	10/ ر	(a)	2 /3	,		(b) .	5 /7
4	5 /10			(a) (b) (c)	5 /10		
	2\$/40		2/5		7 /12		10 /16

- Answer on the pad paper provided
- Write your name at the top of each page
- Start each question on a new page
- Clearly label each question

Question 1 (10 marks)

Marks

- (a) For the series $5 + 11 + 17 \cdots$ find:
 - (i) the 16th term.

1

(ii) the number of terms needed to give a sum of 1633.

2

(b) Insert four terms between 8 and $\frac{1}{4}$ to form a geometric sequence.

2

(c) (i) Differentiate $y = \sqrt{25 - x^2}$.

2

(ii) Find the equation of the tangent to this curve at the point x = 3.

3

• Start a new page

Question 2 (10 marks)

Marks

- (a) Find the value of p so that p + 5, 4p + 3, 8p 2 will form successive terms of an arithmetic sequence.
- 2

(b) Evaluate $\sum_{n=1}^{\infty} 8 \times \left(\frac{-1}{2}\right)^{n-1}$

2

- (c) A function is given by $y = x^3 3x^2 7$.
 - (i) For what values of x is the curve decreasing?

2

(ii) For what values of x is the curve concave up?

2

2

- (iii) Ethel concludes that there are therefore no points on the curve where the curve is both decreasing and concave up.
 - She is incorrect. Explain why Ethel is wrong, stating the values of x for which the curve is **both** concave up and decreasing.

• Start a new page

Question 3 (10 marks)

Marks

(a) For a particular function the following is known.

3

$$f(0) = 7$$

$$f'(2) = 0$$

$$f''(2) = -10$$

$$f'(-3) = 0$$

$$f''(-3) = 0$$

Draw any function which satisfies all of the above conditions.

- (b) For the curve $y = 2x^3 + 3x^2 12x + 7$
 - (i) Find the stationary points and determine their nature.

3

(ii) Find any points of inflexion.

2

(iii) Sketch the curve showing all important features.

2

Start a new page

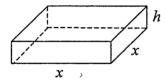
Question 4 (10 marks)

Marks

- (a) Explain why the series $\frac{3}{10} + \frac{7}{100} + \frac{3}{1000} + \frac{7}{10000} + \cdots$ has a limiting sum. 1
- (b) Wallyville is a fast growing town. In 2003, the population is 9750.

 The population is increasing at a rate of 5% of the preceding year's population.

 After how many years will the population first exceed 25000, if the growth rate remains constant?
- (c) A sealed tin rectangular box with a lid is to have a square base and a volume of $64cm^3$. Let the length of the box be x cm.



- (i) Show that the total surface area is given by $A = \frac{256}{x} + 2x^2$.
- (ii) Find the area of the tin needed to make the box with the smallest surface area. 4

End of Assessment

HSC Assessment One, 2003

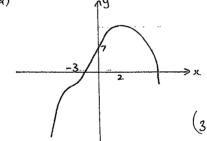
- 1_a) 5+11+17+ -...
- AP.
- i) a=5, d=6
- T16 = 5 + 15 × 6
 - = 95
- ii) Sn = 1633
 - $\frac{n}{8}(2\times5+(n-1)\times6)=1633$ n(10+6n-6) = 3266
 - $4n + 6n^2 = 3266$
 - $3n^2 + 2n 1633 = 0$
 - n=-2 = 14+4×3×1633
 - = 23 or -23 3
 - as no .. 23 terms are needed to give a sum of 1633.
- b) T1=8 T6= 1/4
 - 9=8
 - ar 5 = 1/4
 - 815 = 1/4
 - r5= 1/32
 - r= 1/2
 - 8, 4, 2, 1, 1, 4
- (ci) y = (25 x2) 1/2 $y' = \frac{1}{2} (25 - x^2)^{-1/2} \times -2x \sqrt{(a^{1/2})}$

- (ii) x = 3, $y = \sqrt{25 3^2}$
- rale
- / calc
- $y-4=-\frac{3}{2}(x-3)$
- 44-16 = -3x+9 3x + 4y - 25 =0
- / calc
- 2a) If AP T2-T1 = T3-TL $4p+3-(p+5)=8p-2-(4p+3)\sqrt{}$
- 4p+3-p-5 = 8p-2-4p-3
- 3p-2 = 4p-5
- p = 3.
- b) & 8x (=1)"-1 = 8+(-4)+(2)+...
- a=8 r= -1/2
- - = 51/3
- c) $y = x^3 3x^2 7$
- i) $y' = 3x^2 6x$
- decreasing when y' <0
 - 3x2-6x 40
 - 3x (x-2) <0
 - - Calc

- cii) y" = bx -6
- concave up when y">0
 - 6x 6 > 0
 - 6x >6
 - x > 1
- Calc

Calc

- iii) Ethel is wrong because there is some overlap in those 2 /m | ii) pt of inflexion at y"=0 answers. When 1 < x < 2 the curve with both be decreasing and concare up.
- 39)

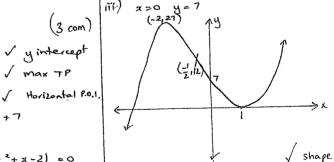


- V y intercept V Max TP
- b) $y = 2x^3 + 3x^2 12x + 7$
- i) $y' = 6x^2 + 6x 12$
 - TPs at y'=0 6(x2+x-2) =0
 - (x+2)(x-1) = 0

· Calc

- x= -2, 1
- x = -2, y = 27
- x=1 , y=0
 - y" = 12x+6

- at x=-2 y= 12(-2)+6 :. max TP at (-2,27) ot = 1 4" = 12()+6 -- min TP at (1,0)
- x = -1/2 , y = 18test 1 -1 -1/2 0 y" -ve 0 +ve concavity / |
 - i. concavity has charged i. pt inflex at (-1,12)



/ labels including y intercept

$$a = \frac{37}{100}$$
 $a = \frac{1}{100}$

and as IrI < I it will have a limiting sum.

$$T_n = q v^{n-1}$$

n-1 > 19.299

$$n > 20 \cdot 299$$

$$n = 21$$

. The 21st term is the first to exceed 25000 which is 20 years after 2003.

$$64 = x^2 h$$

$$h = \frac{64}{x^2}$$

$$=2x^2+4xh$$

$$SA = 2x^2 + 4x \left(\frac{64}{x^2}\right)$$

$$\therefore A = 2x^2 + 256$$

ii)
$$A^1 = 4x - 256x^{-2}$$

 $A^1 = 4 + 512x^{-3}$

$$4x - \frac{256}{x^2} = 0$$

$$4x = \frac{256}{x^2}$$

$$4x^{3} = 256$$

$$x^3 = 6^4$$

check it's min.

$$x=4$$
 $A'' = 4 + 512 64$

: min value.

When
$$x = 4$$

$$A = 2(4)^2 + \frac{256}{4}$$