Name:	•		
ramic.	-	-	

SCEGGS Darlinghurst

Preliminary Assessment Task 2

May Examination, 2001

Mathematics

Outcomes to be assessed:

- P2: provides reasoning to support conclusions that are appropriate to the context
- P3: performs routine artithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
- P4: chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques

TIME ALLOWED: 1½ HOURS

DIRECTIONS TO CANDIDATES:

- Attempt all questions
- ALL QUESTIONS ARE OF EQUAL VALUE
- START EACH QUESTION ON A NEW PAGE
- Write your answers on the paper provided.
- Write your name and your teacher's name on each page.
- Approved scientific calculators should be used.
- All necessary working should be shown. Marks may be deducted for careless or badly arranged work.
- Mathematical templates and geometrical instruments may be used.

QUESTION 1 (15 Marks)

Marks

a) Evaluate
$$\sqrt{\frac{(2.63)^3}{1 - 0.6 \times 0.3}}$$
 to 2 decimal places

· 1

b) Subtract
$$2x-3$$
 from $6x^2-3x+8$

1

c) If
$$x = -3$$
, find the value of $-2x^2$

d) Evaluate
$$\frac{2.65 \times 10^7}{3.4 \times 10^{-3}}$$

expressing your answer in scientific notation correct to 2 significant figures.

2

$$3(3x+2)-2(3x+1)$$

2

$$(6-2\sqrt{3})(5\sqrt{3-2})$$

2

g) Show that
$$x = 5$$
 is not the only solution of $x^2 = 5x$

2

$$\frac{3x}{(x+1)^2} - \frac{5}{x+1}$$

3

1

$$|6 \times (-3)| + |-2|^3$$

= 18 - 8

$$= 18 - 8$$

Explain the mistake she made in arriving at this answer.

QUESTION 2 (15 Marks) Start a new page

Marks

a) Express 0.42 as a fraction in simplest form.

2

b) Solve simultaneously:

2

$$2x - y = 15$$

- 2y x = 0
- c) An agent charges 6% commission on the first \$200000 of the value of a property sold and 2% on the remaining value. What commission does he receive for selling a house for \$650000?

2

d) Make h the subject of the formula:

2

$$d = 5\sqrt{\frac{h}{2}}$$

e) Ben made a mistake in solving this problem. Identify the line in which the mistake was made and correct the solution:

3

Line (i)
$$\frac{x}{2} + \frac{x-2}{(x+3)} = \frac{x(x+3) + 2(x-2)}{2(x+3)}$$

Line (ii)
$$= \frac{x + 2(x-2)}{2}$$

Line (iii)
$$= \frac{x+2x-4}{2}$$

Line (iv)
$$= \frac{3x-4}{2}$$

f) Explain how you know that $5x^2 - x + 10 = 0$ has no real solutions. (Show all necessary working.)

2

g) If
$$3 = m^{0.67}$$
, find the value of $m^{2.01}$

2

QUESTION 3 (15 Marks) Start a new page.

Marks

a) Factorise fully:

$$6x^2y^2 - 6$$

b) Find to the nearest integer the value of

2

$$M^4$$
 if $M = \sqrt{a - 2bc}$ where $a = 300.6$, $b = 2.4$ and $c = -5$

c) Simplify:

4

$$\frac{x^3 + 27}{9x + 18} \times \frac{5x^2 - 20}{x^2 + 3x + 9}$$

d) A decimal approximation to $\frac{5}{4\sqrt{7}}$ is 0.47.

2

When David was asked to find a decimal approximation for $\frac{5\sqrt{7}}{28}$, he immediately wrote down 0.47. Explain why $\frac{5}{4\sqrt{7}}$ and $\frac{5\sqrt{7}}{28}$ must both equal 0.47.

e) Solve
$$\frac{3x}{5} = 4 - \frac{x+3}{3}$$

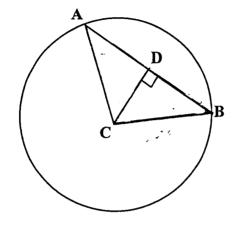
3

f) Write an absolute value question which has this solution when graphed:

2

QUESTION 4 (15 Marks) Start a new page

Marks


a) Solve for $x, 0 \le x \le 180^{\circ}$:

1

$$\cot 60^{\circ} = \tan x^{\circ}$$

b) Find the length of AB in this diagram to 2 decimal places:

2

radius = 20cm $\angle DCB = 42^{\circ}$

C is the centre of the circle.

c) Find all possible values of θ to the nearest minute where $0^{\circ} \le \theta \le 360^{\circ}$.

(i) $\sin \theta = 0.9897$

2

(ii)
$$2\sin^2\theta - 1 = 0$$

3

d) Show that
$$\cos^2 45 + \sin 60 = \frac{1 + \sqrt{3}}{2}$$

2

- e) A ship sails 70km from a harbour on a bearing of 030° and then 40km on a bearing of 120°.
 - (i) Draw a diagram showing all this information.

2

(ii) Find the ship's distance from its starting point, correct to 1 decimal place.

1

(iii) What bearing would a rescue boat leaving from the same harbour need to sail to meet the ship?

2

Semester	ı	2001.

Year 11 2 unit Solutions.

(0)

QUESTION 1

$$\checkmark$$

b)
$$6x^2-3x+8-(2x-3)$$

= $6x^2-3x+8-2x+3$

$$=6x^{2}-5x+11$$

$$C) - 2x^{2}$$

= -2×3^{2}
= -2×9

=-18

$$=9x+6-6x-2$$

$$=3x+4$$

$$=(6-2\sqrt{3})(5\sqrt{1})$$

= $(6-2\sqrt{3}).5$

OR misprint on paper Question should have been (6-2/3)(5/3-2)

$$9) x^2 = 5x$$

$$x^2 - 5x = 0$$

$$x(x-5)=0$$

$$\frac{h}{(x+i)^2} - \frac{5}{x+1}$$

$$= \frac{3x - 5(x+1)}{(x+1)^2}$$

$$= \frac{3x - 5x - 5}{(x+1)^2}$$

$$=-2x-5$$
 $(x+1)^{2}$

1) Correct solution is
$$|6x-3| + |-2|^3$$

She forgot to take the absolute value of the 1-2/3. It should be positive.

QUESTION 2

a) Let
$$x = 0.41$$

 $x = 0.424242...$

100 x = 42.424242 ... subtract

$$99x = 42$$

$$x = \frac{14}{33}$$

$$2(29) - 9 = 15$$

 $4y - 9 = 15$
 $3y = 15$
 $y = 5$

$$3y = 15$$

 $y = 5$

$$= 6\% \times 200000 + 2\% \times 450000$$

Square both sides

$$\frac{d^2}{25} = \frac{b}{2}$$

$$h = \frac{2d^2}{25}$$

e) A cancelling mistake has been made in line (1). You cannot cancel unless it is a common factor.

correct solution $\frac{x}{2} + \frac{x-2}{x+3} = \frac{x(x+3) + 2(x-2)}{2(x+3)}$

$$= \frac{x^2 + 3x + 2x - 4}{2(x+3)}$$

$$= \frac{x^2 + 5x - 4}{2(x+3)}$$

f)
$$5x^2 - x + 10 = 0$$

$$x = \frac{-b^{\pm} \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-1)^{\pm} \sqrt{(-1)^2 - 4.5.10}}{2 \times 5}$$

$$= \frac{1 \pm \sqrt{1 - 200}}{10}$$

$$= \frac{1 \pm \sqrt{-199}}{10}$$

This equation has no real solutions since you can't take the square root of a regative number.

$$m^{2.01} = m^{0.67 \times 3}$$

$$= (m^{0.67})^3$$

$$= 3^3$$

$$= 27$$

QUESTION 3:
a)
$$6x^2y^2 - 6$$

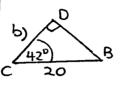
 $=6(x^2y^2 - 1)$
 $=6(xy - 1)(xy + 1)$

b)
$$M^{4}$$

= $\sqrt{300.6 - 2 \times 2.4 \times -5}$
= 105365.16
= 105365
(to nearest integer)

$$\frac{c)}{9x+18} \frac{x^{3}+27}{x^{2}-3x+9} \times \frac{5x^{2}-20}{9x+18} \times \frac{5(x^{2}-3x+9)}{x^{2}-3x+9} \times \frac{5(x-2)(x+2)}{x^{2}-3x+9} = \frac{5(x-2)(x+3)}{9}$$

Rationalising does not change the number so the decimal approximation is the same.


e)
$$\frac{3x}{5} = 4 - \frac{x+3}{3}$$

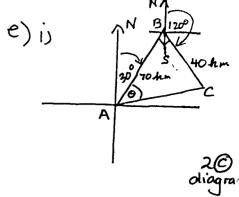
multiply all terms by 15
 $9x = 60 - 5(x+3) \vee$
 $9x = 60 - 5x - 15$
 $14x = 45$
 $x = \frac{45}{14}$

2= 33/4

QUESTION 4:

 \cdot $\infty = 30$

a) Using complement rule $tan(90-0) = \cot 0$ $\cot 60^{\circ} = \tan (90-60)^{\circ}$ $= \tan 30^{\circ}$



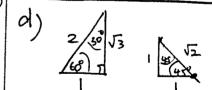
$$\sin 42^\circ = \frac{DB}{20}$$

$$DB = 20. \sin 42^\circ$$
= 13.38...

ii)
$$2\sin^2\theta - 1 = 0$$

 $2\sin^2\theta = 1$
 $\sin^2\theta = 1/2$
 $\sin^2\theta = \pm \frac{1}{\sqrt{2}}$

Sin
$$\Theta = \frac{1}{\sqrt{2}}$$
Quads $0 \neq 0$
 $0 = 45^{\circ}, (180 + 45)^{\circ}$
 $0 = 45^{\circ}, 135^{\circ}$
 $0 = 45^{\circ}, 135^{\circ}, 135^{\circ}$
 $0 = 45^{\circ}, 135^{\circ}, 135^{\circ}$


·· AABC is right angled.

By Pythagoras

$$AC^{2} = AB^{2} + BC^{2}$$

 $= 70^{2} + 40^{2}$
 $= 6500$
 $AC = \sqrt{6500}$
 $= 80.6 \text{ km}$

iii) Find LBAC

$$\tan \theta = \frac{40}{70}$$
 $\theta = 29^{\circ}45^{\circ}$

$$\cos^{2} 45^{\circ} + \sin 60^{\circ}$$

$$= \left(\frac{1}{\sqrt{2}}\right)^{2} + \frac{\sqrt{3}}{2}$$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2}$$

$$= \frac{1+\sqrt{3}}{2}$$