

2009 Year 9 Semester 1 Examination

Mathematics (Pathway 5.3+)

Name:

Outcomes tested: MS 5.1.2, MS 5.2.3, PAS 5.1.1, PAS 5.3.1, WM 5.3.1, WM 5.3.2, WM 5.3.3, NS 5.1.1 and NS 5.1.2

General Instructions

- Time allowed 11/2 hours
- This paper has four questions
- Carefully read the instructions at the beginning of each section
- Attempt all questions.
- · Write your name where indicated
- · Show all your working in the spaces provided for each question
- Marks may be deducted for careless or badly arranged work
- Circle the words General Instructions above to show that you have read these instructions
- Mathematical templates, geometrical equipment and scientific calculators may be used

	Questions	Possible Mark	Mark Awarded	
1	Earning Money	20		
2	Indices	20		
3	Products and Factors	20		
4	Trigonometry	10		
TOTAL		70		
		100%		

Name: ...

Marks

Earning Money Ouestion 1 (20 marks) If Genevieve works from 3:30 pm to 6:30 pm 3 days each week and earns \$139.50, find her hourly pay rate. Sue works 40 hours a week from Monday to Friday, earning \$26 an hour. She is paid time-and-a-half for overtime hours. On Monday, Sue works 2 hours of overtime. She works 5 hours of overtime on Wednesday and 2 hours of overtime on Thursday. Calculate Sue's earning for the week Calculate Sue's average earnings per day for the week. Clive's dog washing business charges \$60 for large dogs, \$50 for medium dogs and \$45 for small dogs. Clive earned \$570 when he washed 4 small dogs, 3 medium dogs and some large dogs. How many large dogs did Clive wash?

Question 1 continues on the next page

2

Marks

(d) A company accountant calculates the weekly pay using the following formula:

 $P = S \div D \times 7$

P = weekly pay

S = salary

D = number of days in this year

If Lee's yearly salary is \$72000, what is the difference between his weekly pay in a leap year and in a non-leap year?

(e) John is paid a weekly retainer of \$1000, plus a commission of 8.5% on all sales. John will be paid a total of \$1956.25 this week. Calculate the value of his sales.

Bill's firm made a profit of \$1 800 000 in its first year.
 Because of Bill's clever marketing, the next year profits increased by 15%.
 Bill received a bonus of 12% of the *increase* in profits. How much is Bill's bonus?

Question 1 continues on the next page

Question 1 (continued)

(g) Fred buys a <u>fortnightly</u> train ticket for \$85, allows \$15 each day for lunch at work (Monday to Friday) and buys a magazine for \$8.60 when it comes out every 4 weeks.

Name:

(i) Calculate the total of Fred's expenses for 4 weeks.

- 4

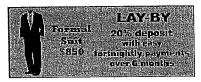
ii) Calculate the total of Fred's weekly expense budget.

1

(h)

FREE \$650 Mobile Phone Terms: \$39 monthly plan includes \$30 calls & text minimum 2 year contract

Calculate the minimum amount you will pay if you enter into this phone contract. 1


(i) Which purchase represents the better value?
 Offer A: Take 10% off the regular price of 12 cans for \$5.50
 Offer B: Take 20% off the regular price of 24 cans for \$12.
 (All necessary working must be shown.)

Question 1 continues on the next page

Overtion	1	(continued)
Chiestion	1	(COHUMICO)

Marks

(j)

Calculate the amount of each payment to the nearest cent. (Assume 1 year = 52 weeks.)

(k) Andrew invests \$11 500 for 2 years 6 months at 7.25% pa. Find the value of the investment at the end of the term. (Answer to the nearest cent.)

- Eliza is paid $17\frac{1}{2}$ % holiday loading for 4 weeks of her annual holiday. Her usual pay for 4 weeks is \$2456.
 - (i) Calculate her loading for the 4 week period.

(ii) What is her total pay for the four week holiday period?

1

Ques	tion 2	(20 marks)
(a)	(i)	Express

Indices

Express 0.000 059 7 in scientific notation.

Simplify, giving your answer in scientific notation. $\sqrt{1.44 \times 10^{-6}}$

(b) Simplify:

(i)
$$3x^{\frac{1}{2}} \times 4x^{\frac{1}{2}}$$

1

Marks

(ii)
$$(49m^6)$$

1

(c) If x = 2, y = 3 and $z = \frac{1}{2}$, evaluate:

(i)
$$x^{-1} + y^{-1}$$

.

(ii)
$$(xz)^{-1}$$

Question 2 (continued)

Write $36q^{-4}$ without a negative index.

Marks

Simplify:

(ii) $(2y^3)^4 \div (4y^6)^2$

2

(iii) $6(a^3)^0$

1

(iv) $x(x^2 - 7x + 1) - (x^3 - x^2)$

(v) $(2^x)^2 \div (2^{1-x})^2$

2

Question 2 continues on the next page

Question 2 (continued)

- Marks
- Consider the expression $5v^{-10}$. If $v = \frac{1}{20}$, then the value of the expression would be: 1 (Circle the correct response.)
 - An extremely small number.
 - (B) An extremely large number.
 - Very close to 5.
- Solve the following equation:

$$3^x \times 3^{x+4} = 243$$

Question 3 (20 marks)

Products and Factors

Simplify

(c)

Marks

(ii) $\frac{12a^6}{b} \times \frac{b}{4a^7}$

2

2

The average of two fractions is $\frac{3u}{10}$. If one of the fractions is $\frac{u}{5}$, what is the other fraction (in simplest form)?

The perimeter of this rectangle is $\frac{26p}{15}$ units.

What is its length (in terms of p)?

Question 3 continues on the next page

Ouestion 3 (continued)

The area of a rectangle in square units is $5m^2 - 10m$. If one of the sides has a length of 5m units, what is the length of the other side? 1

Factorise the following expressions.

(i)
$$5x^2 + 15x$$

Marks

(ii)
$$-26y^2 - 13y$$

(iii)
$$2m^2 - 9m + 10$$

Question 3 (continued)

Factorise the following expressions. (cont.)

(iv)
$$32y^2 - 2x^2$$

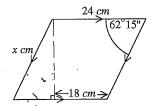
Marks

(v)
$$(ab-2a)(5b+10)$$

(vii)
$$\frac{2p^2 + p - 6}{4p^2 - 9} + \underbrace{p^3 - 4p^2 - 4p + 16}_{2p^2 - p - 6}$$

Question 4 (10 marks)

Trigonometry


Marks

(a)

A man whose height is 185 cm casts a shadow of 210 cm. Find the angle of elevation of the sun's rays correct to the nearest minute. 2

(b)

Calculate the width "x" of the parallelogram, to the nearest centimetre.

Marks

Question 4 (continued)

(c) A plane takes off at a horizontal angle of 32 45' and a speed of 360 km/h.

After 2minutes the plane levels off and continues to fly at a constant altitude.

Calculate the altitude at which the plane continues to fly, correct to 2 decimal places.

(d) Town A is 72 km northeast of town B and town C is 45 km northwest of B. Show this information on a diagram.
Calculate the three-figure bearing from A to C, correct to the nearest degree.

3

End of paper

2009 Pathway 5.3+ Half Yearly Examination – Answers

1.	(a)	\$15.50 per hour	1	
	(b)	(i) Sue earned \$1391	1	
		(ii) Average earnings per day for the week = \$278.20 (or		
		\$198.71 for those who used 7 days.	1 1	
(c)		Clive washed 4 large dogs		
	(d)	Difference = \$3.77	1 2	
	(e) John's sales are \$11 250 (f) Bills bonus is \$32400 (g) (i) Fred's monthly expenses \$478.60			
		(ii) Fred's weekly expenses \$119.65		
	(h)			
	(i)	Offer B is best – needs appropriate working		
	(j)	j) Fortnightly repayment is \$52.31		
	(k)	Value of Investment is \$13584.38	2	
	(1)	(i) Loading is \$429.80	1	
		(ii) Total pay is \$2885.80	1	
		_		
2.	(a)	(i) 5.97×10^{-5}	1	
	` '	(ii) 1.2×10^{-3}	1	
	(b)	(i) 12x	1	
	V /	(ii) $7m^3$	1	
	(c)	(i) $\frac{5}{6}$	2	
	(0)		_	
		(ii) 1	2	
	(d)	$\frac{36}{q}$	1	
	7.3		1	
	(e)	(i) 16 (ii) 1	2	
		• •	1	
			2	
		(iv) $-6x^2 + x$ (v) 2^{4x-2}	2	
	/ C \	\-'\' -	1	
	(f)	B - an extremely large number	2	
	(g)	$x = \frac{1}{2}$	2	
	, 2	10-1		
-	p +	$\frac{p-6}{-9} \div \frac{p^3-4p^2-4p+16}{2p^2-p-6}$		
	4p2	-9 $2p^2-p^-6$.		

3.	(a)	(i)	$\frac{4d+3h}{6}$		1
		(ii)	$\frac{3}{a}$		2
	(b)	$\frac{2u}{5}$			2
	(c)	$\frac{4p}{5}$			1
	(d)	m-2			
	(e)	(i)	5x(x+3)		1
		(ii)	-13y(2y+1)		1
		(iii)	(2m-5)(m-2)		1
		(iv)	2(4y-x)(4y+x)		2
		(v)	(a-5)(b+2)		2
		(vi)	$\frac{3}{\left(x+2\right)^2\left(x-1\right)}$		3
		(vii)	$\frac{1}{p-4}$		3
4					
•	(a)	41°2	3'	•	2
	(b)	x = 1	3 cm		2
	(c)	$h = \epsilon$	5.5		3
			•		_

(d) Bearing = 257° T