SCOTS COLLEGE - EXT 2 - PRACTICE PAPER (JUNE 09)

TOPICS: VOLUMES; COMPLEX NUMBERS, POLYNOMIALS

QUESTION 1

NEQUALITIES.

A solid is formed with a square cross section at right angles to the x axis as shown above. The equation of the base is $4y^2 + (xy)^2 = 1$.

- (i) Show that the volume of a thin slice is approximately equal to $\frac{4}{4+x^2}\delta x$, where δx is the thickness of the slice.
- (ii) Hence calculate the volume of the solid bounded by $-a \le x \le a$.
- (iii) What is the limiting value of the volume of the solid as a approaches infinity?

QUESTION 2

- a. The region bounded by the curve $y = x^3$, the line y = 1 and the y axis is rotated about the line y = -1. Using cylindrical shells, find the volume of the solid of revolution. [4 MARKS]
- b. A solid has a base in the form of a circle with centre the origin and radius 6 units. If every section perpendicular to the x axis is an equilateral triangle, show that the volume of the solid is $288\sqrt{3}$ cubic units.
- c. (i) Sketch the ellipses $x^2 + 25y^2 = 100$ and $25x^2 + y^2 = 100$ on the same diagram, showing their intercepts with the coordinate axes. [2 MARKS]

(You do not need to show their foci or directrices).

(ii) A child's spinning top is made by revolving the total area enclosed by these ellipses around the x axis.

[3 MARKS]

Show that its volume is given by:

$$V = 4\pi \left[\int_0^a x \sqrt{100 - 25x^2} \, dx + \frac{1}{5} \int_a^{10} x \sqrt{100 - x^2} \, dx \right]$$

where a is the positive x coordinate of the points of intersection of the ellipses.

(iii) Hence or otherwise find the volume in terms of a.

[2 MARKS]

Question 3

- a. Given that $z = -1 + \sqrt{3}i$ is a root of the equation $z^4 4z^2 16z 16 = 0$, find the other roots. [4 marks]
- b. Given that α , β and γ are the roots of the cubic equation $x^3 x^2 + 5x 3 = 0$, find: [5 marks]
 - (i) the equation whose roots are $-\alpha$, $-\beta$, $-\gamma$.
 - (ii) the equation whose roots are $\alpha\beta$, $\alpha\gamma$, $\beta\gamma$.
- For what values of m does the equation $x^3 12x^2 + 45x m = 0$ have three distinct solutions? [6 marks]

QUESTION 4

(a)

A circular flange is formed by rotating the region bounded by the curve $y = \frac{5}{x^2 + 1}$, the x axis and the lines x = 0 and x = 3, about the line x = 10. (All measurements are in cm)

- (i) Use the method of cylindrical shells to show the volume generated $V cm^3$ of the flange is given by $V = \int_0^3 \frac{(100 100x)\pi}{x^2 + 1} dx$.
- (ii) Hence find the volume of the flange correct to the nearest cm^3
- (b) Use the **method of slices** to find the volume generated when the area bounded by $y = x^2 3x^4$ and the x-axis is rotated about the y-axis. Begin with a suitable sketch.
 - (i) Evaluate the volume.
 - (ii) Give two reasons why using the "method of cylindrical shells" in this question would have been easier.
 - (iii) Use the method of cylindrical shells to evaluate the volume
- Show the area of an isosceles right angled triangle with hypotenuse h is given by $\frac{h^2}{4}$.

 The base of a solid is the region enclosed by the curve $y = 9 x^2$ and the x-axis.

 Each cross-section perpendicular to the y-axis is an isosceles right angled triangle with hypotenuse lying in the base.

 Use integration to find the volume of the solid.

Question 5

- a. (i) Show that 2 + i is a zero of $P(x) = x^3 11x + 20$.
 - (ii) Hence or otherwise solve $x^3 11x + 20 = 0$.
- **b.** The equation $x^3 + 2x 1 = 0$ has roots α, β, γ [6 marks]
 - (i) Find the value of $\sum \alpha$ and the value of $\sum \alpha \beta$.
 - (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$
 - (iii) Find the equation of a polynomial with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$

- c. (i) Find the coordinates of the stationary points of $P(x) = x^3 3px^2 + 4q$, where p and q are positive real constants.
 - (ii) Show that the equation P(x) = 0 has three real distinct roots if $p^3 > q$.

Question 6

- (a) $\sqrt{3} + i$ is one root of $x^4 + px^2 + q = 0$, where p and q are real.
- (i) Find p and q
- (ii) Factor $x^4 + px^2 + q$ into quadratic factors with real coefficients.
 - The quadratic equation $x^2 x + k = 0$ where k is a real number, has two distinct positive real roots α and β
- (i) Show that $0 < k < \frac{1}{4}$
 - (ii) Show that $\alpha^2 + \beta^2 = 1 2k$ and deduce that $\alpha^2 + \beta^2 > \frac{1}{2}$
 - (iii) Show that $\frac{1}{\alpha^2} + \frac{1}{\beta^2} > 8$