

The Scots College

Year 11 Mathematics Extension 1

(Assessment 1

March 2007

GENERAL INSTRUCTIONS

- Working time 50 minutes
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Complete each question on a new page.
- · Attempt All Questions

TOTAL MARKS: 48

WEIGHTING:

15%

Question 1: (16 marks)

a) Simplify
$$\frac{25^{4x} \times 8^{3x}}{10^{2x}}$$

b) Solve
$$-2x^2 - 5x + 12 \ge 0$$

c) Solve
$$\frac{3}{x-5} \le 2$$

d) Factorise as fully as possible
$$x + x^7$$

e)i) Find the points of intersection of the circle
$$x^2 + y^2 = 16$$
 and the line $y = -x + 4$.

ii) Hence sketch diagrams showing the regions where the given inequalities hold simultaneously
$$x^2 + y^2 < 16$$
 and $y \ge -x + 4$.

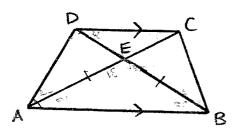
Question 2: (16 marks)

- a) By showing full reasoning determine if the function f(x) = |2x| 3 is odd, even or neither.
- b) State the domain and range of the functions below:

i)
$$y = \frac{1}{\sqrt{x-2}}$$
 ii) $y = \frac{1}{\sqrt{25-x^2}}$

c) If
$$f(x) = 10^x + 10^{-x}$$
, find the value of $[f(x)]^2 - f(2x)$

d) Sketch

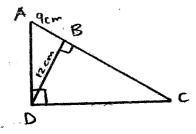

i)
$$y = 3^{-x} - 3$$
 ii) $y - 2 = \frac{1}{x - 1}$

e) On the same set of axes, graph y = |1 - 2x| and y = -x - 1. Using the graph, or otherwise, explain 3 why |1 - 2x| + x + 1 = 0 has no solutions.

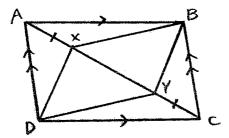
Question 3: (16 marks)

a) In the diagram, AB // $\frac{DC}{CE}$ and $\angle CAB = \angle ABD = \alpha$. Prove $\angle DAC = \angle CBD$.

6



- b) In the diagram below AB = 9 cm, DB = 12 cm and $\angle ABD = \angle ADC = 90^{\circ}$.
- i) Prove $\triangle ABD$ is similar to $\triangle ADC$.


2

ii) Hence, find the length of DC and BC.

3

c) The diagram shows the parallelogram ABCD with diagonal AC. The points X and Y lie on this diagonal in such a way that AX = CY. Prove that DXBY is a parallelogram.

