Name:

THE SCOTS COLLEGE

YEAR 11 MATHEMATICS ASSESSMENT TASK 3 Thursday 26th July 2007

25% Assessment Task

TOTAL MARKS: 41

INSTRUCTIONS:

- * Time allowed: 50 minutes.
- * Approved calculators may be used.
- * Start each question on a new page.
- * All necessary working must be shown.
- * Marks will not be awarded for careless or badly arranged work.

Outcomes Being Assessed.

- P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
- chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
- P5 understands the concept of a function and the relationship between a function and its graph

QUESTION 1 (12 Marks)

a) In triangle ABC, AB = 8cm, BC = 7cm and CA = 5cm.

- Show that $\angle CAB = 60^{\circ}$.
- Hence find the <u>exact</u> area of triangle ABC. [2]
- b) A ship leaves Port P and sails on a bearing of 040° for 320 nautical miles to reach point A. It then sails on a bearing of 150° for 510 nautical miles to reach point B.
 - i) Draw a diagram to clearly represent all the given information.
 - ii) Find the distance between the point B and Port P. Give your answer in nautical miles correct to 1 decimal place.
 - iii) Use your answer from part ii) to find the bearing of B from P. Give your answer correct to the nearest degree.

[5]

[1]

[2]

c)

- i) Use the given diagram to show that $x = 8 \sin 50^{\circ}$.
- Hence show that $\sin y = 2\sin 20^{\circ} \sin 50^{\circ}$ and find the value of y correct to the nearest minute. [2]

Name:

OUESTION 2 (8 Marks) START A NEW PAGE

a) Find the exact value of $\tan 30^{\circ} + \sec 300^{\circ}$

- [2]
- b) If $\sin x = \frac{2}{3}$ and $90^{\circ} < x < 180^{\circ}$, find the exact value of $\cot x$.
 - [2]

c) Solve $2\cos x + 1 = 0$ for $0^0 \le x \le 360^0$

- [2]
- d) Prove that $\cot \theta + 2 \sec \theta = \frac{1 \sin^2 \theta + 2 \sin \theta}{\sin \theta \cos \theta}$ [2]

QUESTION 3 (14 Marks) START A NEW PAGE

- a) i) Sketch the curve $y = 2x^2 9x + 5$ by first finding where the curve crosses the co-ordinate axes.
 - ii) Find the equation of the axis of symmetry of the curve $y = 2x^2 9x 5$.
 - iii) Hence, or otherwise, find the co-ordinate of the turning point.
- [4]
- b) Find the values of k for which the expression $kx^2 + (k+3)x + 4$ is positive definite. Explain why there are no values of k for which the expression is negative definite. [3]
- c) Find the values of A, B and C for which

$$2x^{2} - 3x + 5 = A(x-1)(x-2) + B(x-1) + C$$
 [2]

Name:	
-------	--

- d) If α and β are the roots of $2x^2 6x + 8 = 0$ find the value of
 - i) $\alpha + \beta$
 - ii) αβ

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 [3]

e) Solve
$$x^4 + 8x^2 - 9 = 0$$
 [2]

QUESTION 4 (7 Marks) START A NEW PAGE

- a) Write the equation of the locus of a point P(x, y) that moves so that its distance from the point (0,3) is equal to its distance from the line y = -3.
- b) i) Write the equation $8y = x^2 4x 28$ in the form $(x h)^2 = 4a(y k)$.
 - ii) Hence, write down the co-ordinates of the focus of this parabola.
- c) Sketch the parabola $y^2 = -8(x-2)$. Clearly draw and label the focus, directrix and vertex on your diagram. [3]

END OF PAPER

Question (12 marks)

a) i)
$$\frac{5}{8}$$
 $\frac{7}{8}$ $\frac{8}{2 \times 5 \times 8}$.

$$\cos A = 0.5$$

$$A = \cos^{-1} 0.5$$

7i) Area =
$$\frac{1}{2} \times 5 \times 8 \times \sin 60$$

= $20 \times \frac{13}{2}$
= $10\sqrt{3} \text{ cm}^2$ (2)

$$x^{2} = 320^{2} + 510^{2} - 2 \times 320 \times 510 \cos 70^{\circ}$$

$$x^{2} = 250 \times 64 \cdot 6252$$

$$x = 500 \cdot 8638 \dots$$

$$x = 500.8638...$$

 $x = 500.9$ nautical miles ①

iii)
$$\frac{\sin \theta}{500} = \frac{\sin 70}{500.9}$$
 . Bearing of B from P is $\frac{\sin \theta}{500.9} \times 510 = 40 + 73$. $\sin \theta = 0.95676$. $= 113^{\circ}$ (1)

c) i)
$$\sin 50 = \frac{x}{8}$$

 $\therefore x = 8 \sin 50^\circ 0$

fi)
$$\frac{\sin y}{x} = \frac{\sin 20}{4}$$

 $\sin y = \frac{\sin 20}{4} \times 30$
from i) $\sin y = \frac{\sin 20}{4} \times 8\sin 50$
 $\sin y = \frac{\sin 20}{4} \times 8\sin 50$

$$\sin y = 2 \sin 20 \sin 50$$

 $\sin y = 0.5240...$
 $y = 31.6013...$

$$y = 31^{\circ} 36^{\circ}$$

a)
$$\tan 30 + \sec 300$$

$$= \frac{1}{\sqrt{3}} + \frac{1}{\cos 300}$$

$$= \frac{1}{\sqrt{3}} + \frac{1}{\cos 60}$$

$$= \frac{1}{\sqrt{3}} + \frac{1}{2}$$

$$= \frac{1}{\sqrt{3}} + 2$$

b)
$$\sin x = \frac{2}{3}$$
 $\frac{2}{15}$ $\frac{3}{15}$ $\frac{1}{15}$ $\frac{3^{2}-2^{2}}{15} = 5$ $\sin \alpha = \frac{2}{15}$ $\cos \alpha = \frac{2}{15}$ $\cos \alpha = \frac{2}{15}$ $\cos \alpha = \frac{2}{15}$ $\cos \alpha = \frac{2}{15}$

d)
$$2\cos x + 1 = 0$$
 for $0 \le x \le 360^{\circ}$
 $\cos x = -\frac{1}{2}$ $\sin \frac{x}{16}$
 $\therefore x = (180 - 60)$, $(180 + 60)$ ①
 $= 120^{\circ}$, 240° . ①

e) frage

$$\cot \theta + 2\sec \theta = 1 - \sin^2 \theta + 2\sin \theta$$

 $\sin \theta \cos \theta$

$$RHS = \frac{\cos^2\theta + 2\sin\theta}{\sin\theta\cos\theta}$$

$$= \frac{\cos^2 \theta}{\sin \theta \cos \theta} + \frac{2\sin \theta}{\sin \theta \cos \theta}$$

$$= \cot \theta + 2\sec \theta$$

: "Question 5 (14 Marks)

a) i)
$$y = 2x^2 - 9x - 5$$
.
y-int is $y = -5$.

x-int is
$$2x^2-9x-5=0$$

 $2x \times 1$ $(2x+1)(x-5)=0$
 $x=-\frac{1}{2}$, $x=5$

$$x = -\frac{b}{2a} = \frac{9}{4}$$

$$x = 2\frac{b}{2} = 2.25$$

iii)
$$y = 2(\frac{9}{4})^2 - 9(\frac{9}{4}) - 5$$

= -15 (2.25, -15)

b) If positive definite
$$k>0$$
 and $\Delta<0$ $(k+3)^2-4k\times4<0$ $k^2+6k+9-16k<0$ $k^2-10k+9<0$ $(k-9)(k-1)<0$ $(k-9)(k-1)<0$

There are no values for negative definite because if negative definite k < 0 and this cannot happen if $\Delta < 0$ since 1 < k < 9.

c)
$$2x^2 - 3x + 5 = A(x-1)(x-2) + B(x-1) + C$$

 $= A(x^2 - x - 2x + 2) + B(x-1) + C$
 $= Ax^2 - 3Ax + 2A + Bx - B + C$
(i) $= Ax^2 + (-3A + B) + C + 2A - B + C$

..
$$A=2$$
 $-3A+B=-3$ $2A-B+C=5$
 $-6+B=-3$ $4-3+C=5$
 $6=3$ $C=4$

d)
$$2x^2-6x+8=0$$

i)
$$\alpha + \beta = -\frac{b}{\alpha} = \frac{6}{2} = 3$$
 (2)

ii)
$$\alpha\beta = \frac{c}{a} = \frac{8}{2} = 4$$
 (2)

$$\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}}$$

$$= \frac{\beta^{2} + \alpha^{2}}{\alpha^{2}\beta^{2}}$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (\alpha \beta)^{2}$$

$$= \frac{3^{2} - 2(4)}{4^{2}}$$

$$= \frac{9 - 8}{16}$$

$$= \frac{1}{16}$$

e)
$$x^{4} + 8x^{2} - 9 = 0$$

Let $m = x^{2}$
 $m^{2} + 8m - 9 = 0$
 $(m+9)(m-1) = 0$,
 $m = -9$ $m = 1$
 $\therefore x^{2} = -9$ $x^{2} = 1$
 $x = \pm \sqrt{-9}$ $x = \pm \sqrt{1}$
no solutions. $x = \pm 1$

b) i)
$$8y = x^{2} - 4x - 28$$

 $x^{2} - 4x = 8y + 28$
 $x^{2} - 4x + 4 = 8y + 28 + 4$
 $(x-2)^{2} = 8y + 32$
 $(x-2)^{2} = 8(y+4)$ 2

focus =
$$(2, -2)$$
 (1)

focus = $(2, -2)$ (1)

focus = $(2, -2)$ (2, -4)

c)
$$y^2 = -8(x-2)$$

vertex = $(2,0)$ (1)
Boad length = λ
 $(0,0)$ λ λ