Numbers and Sets III

Sets

1 Sets

A set is a collection of objects that are clearly defined.

The objects in set A are the elements of set A.

If p is an element of set A, we write $p \in A$.

If p is not an element of set A, we write $p \notin A$.

2 Subsets

If each element of set *A* is also an element of set *B*, then set *A* is called a **subset** of set *B*.

We write this as $A \subset B$.

If A is not a subset of B, we write $A \not\subset B$.

3 Equal sets

Two sets are equal if both contain the same elements.

We say that A = B if, and only if, $A \subset B$. and $B \subset A$.

If A is not equal to B, we write this as $A \neq B$.

4 Number sets

- (a) N represents the set of positive integers.N = {1, 2, 3,}
- (b) \mathbb{Z} represents the set of integers. $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

(c) Q represents the set of rational numbers.

$$\mathbb{Q}=\left\{x\big|x=\frac{p}{q},\,p\in Z,\,q\in Z,\,q\neq 0\right\}$$

- (d) R is the set of real numbers. It comprises all rational and irrational numbers.
- (e) \mathbb{C} is the set of complex numbers. $\mathbb{C} = \{x | x \in a + ib, a \in R, b \in R, i^2 = -1\}$

These sets of numbers are connected by this relationship:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

5 Empty set

An empty set is a set that does not contain any elements.

It is represented by ϕ .

An empty set is regarded as a subset of any set X, that is $\phi \subset X$.

6 Universal set

The universal set is the set that contains all the elements of the sets in a discussion. The symbol for the universal set is \mathscr{E} .

7 Operations of set

(a) Union of sets

The union of set A and set B, is represented by $A \cup B$. This is the set that contains all the elements belonging to set A or set B, or both sets.

 $A \cup B = \{x | x \in A \text{ atau } x \in B\}.$

(b) Intersection of sets

The intersection of set A and set B, is represented by $A \cap B$. This is the set that contains all the elements belonging to both set A or set B.

$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

If $A \cap B = \phi$, then A and B are said to be mutually exclusive.

(c) Difference between two sets The difference between set *A* and set *B* is the set that contains all the elements of set *A* but not the elements of set *B*.

$$A - B = \{x | x \in A \text{ but } x \notin B\}.$$

Note:
$$(A - B) \cap B = \phi$$
.

(d) Complement of a set

The complement of set A is written as A' (atau A^c atau \overline{A}). This is the set that contains all the elements that does not belong to set A.

$$A' = \{x | x \in \mathcal{E}, x \notin A\}$$

Note:

(a) A' is the difference between the universal set & with set A.

(b)
$$(A')' = A$$

(e) Venn diagram

A Venn diagram is a geometrical representation of sets using shaded areas. A Venn diagram shows the overall relationship between the sets.

Example:

 $A \cup B$ is shaded

 $A \cap B$ is shaded

A - B is shaded

A' is shaded

 $A \cap (B - C)$ is shaded

 $A \cap (B \cup C)$ is shaded

8 Algebraic laws of sets

- (a) $A \cup A = A, A \cap A = A$
- (b) $(A \cup B) \cup C = A \cup (B \cup C),$ $(A \cap B) \cap C = A \cap (B \cap C)$
- (c) $A \cup B = B \cup A$; $A \cap B = B \cap A$
- (d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (e) $A \cup \phi = A$; $A \cap \mathcal{E} = A$
- (f) $A \cup \mathscr{C} = \mathscr{C}; A \cap \phi = \phi$
- (g) $A \cup A' = \mathcal{E}$; $A \cap A' = \phi$
- (h) (A')' = A; $\mathscr{C}' = \phi$; $\phi' = \mathscr{C}$
- (i) $(A \cup B)' = A' \cap B';$ $(A \cap B)' = A' \cup B'$

9 General rules

- (a) $A B = A \cap B'$
- (b) $A (B \cup C) = (A B) \cap (A C)$
- (c) $A (B \cap C) = (A B) \cup (A C)$

WORKED EXAMPLES

Example 1

Given $\mathscr{E} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $A = \{3, 4, 5\}$

 $B = \{2, 4, 6, 8\}$ $C = \{1, 3, 5, 7\}$

- (i) List all the subsets of A.
- (ii) Write down each of the following sets:
 - (a) B'
 - (b) C-A
 - (c) $(A \cap B)'$
 - (d) $(A \cup C) \cap (B \cup C)$

Solution:

- (i) The subsets of A are as follows: ϕ , {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}
- (ii) (a) $B' = \{1, 3, 5, 7\}$
 - (b) $C A = \{1, 7\}$
 - (c) $A \cap B = \{4\}$

 $\therefore (A \cap B)' = \{1, 2, 3, 5, 6, 7, 8\}$

(d) $A \cup C = \{1, 3, 4, 5, 7\}$ $B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $\therefore (A \cup C) \cap (B \cup C) = \{1, 3, 4, 5, 7\}$

In the Venn diagram below,

shade the areas for these sets:

- (i) $A \cap (B \cup C)$
- (ii) $B \cap (C A)$
- (iii) $A \cap (B C)'$

Solution:

(ii)

(iii)

Example 3

Given
$$\mathscr{E} = \{x \mid -5 \le x < 10, x \in \mathbb{R}\}$$

$$A = \{x | 1 < x \le 8, x \in \mathbb{R}\}$$

$$B = \{x \mid -3 \le x < 5, x \in \mathbb{R}\}$$

$$C = \{x \mid -2 \le x < 7, x \in \mathbb{R}\}$$

Write down each of the following set:

- (a) $A \cup B \cup C$
- (b) A-B
- (c) $(A B) \cap C$
- (d) $(B \cap C) A$
- (e) $(A \cap C) \cap B'$

Solution:

- (a) $A \cup B \cup C = \{x | -3 \le x \le 8, x \in \mathbb{R}\}$
- (b) $A B = \{x | 5 \le x \le 8, x \in \mathbb{R}\}$
- (c) $(A B) \cap C = \{x | 5 \le x < 7, x \in \mathbb{R} \}$
- (d) $B \cap C = \{x \mid -2 \le x < 5, x \in \mathbb{R}\}$ $\therefore (B \cap C) - A = \{x \mid -2 \le x \le 1, x \in \mathbb{R}\}$
- (e) $A \cap C = \{x | 1 < x < 7, x \in \mathbb{R}\}$ $B' = \{x | -5 \le x < -3 \text{ or } 5 \le x < 10, x \in \mathbb{R}\}$ $\therefore (A \cap C) \cap B' = \{x | 5 \le x < 7, x \in \mathbb{R}\}$

Example 4

Using the algebraic laws of sets, show that for any set *A* and set *B*,

$$A \cup B = A \cup (B \cap A') = B \cup (A \cap B')$$

Solution:

$$A \cup (B \cap A') = (A \cup B) \cap (A \cup A')$$

= $(A \cup B) \cap \mathcal{E}$
= $A \cup B$

$$B \cup (A \cap B') = (B \cup A) \cap (B \cup B')$$
$$= (B \cup A) \cap \mathscr{C}$$
$$= B \cup A$$
$$= A \cup B$$

$$\therefore A \cup B = A \cup (B \cap A') = B \cup (A \cap B')$$

Example 5

Using the algebraic laws of sets, show that for any set A and set B,

- (i) $B \cap (B A)' = A \cap B$
- (ii) $A' \cap (B A)' = (A \cup B)'$

Solution:

(i)
$$B \cap (B - A)' = B \cap (B \cap A')'$$

 $= B \cap (B' \cup A)$
 $= (B \cap B') \cup (B \cap A)$
 $= \phi \cup (B \cap A)$
 $= B \cap A$
 $= A \cap B$

(ii)
$$A' \cap (B - A)' = A' \cap (B \cap A')'$$

 $= A' \cap (B' \cup A)$
 $= (A' \cap B') \cup (A' \cap A)$
 $= (A' \cap B') \cup \phi$
 $= A' \cap B'$
 $= (A \cup B)'$

XERCISE

Given $\mathscr{E} = \{a, b, c, d, e\}$ $A = \{a, b, d\}$

 $B = \{b, d, e\}$

- Find:
- (a) $A \cap B$
- (b) B'
- (c) $A' \cap B$
- (d) $A' \cap B'$
- (e) B-A
- (f) B' A'
- (g) $(A \cup B)'$
- 2 Given $\mathscr{E} = \{a, b, c, d, e, f, g\}$ $A = \{a, b, c, d, e\}$

 $B = \{a, c, e, g\}$

 $C = \{b, d, f, g\}$

Find:

- (a) $B \cap A$
- (b) C B
- (c) $C' \cap A$
- (d) (A B')'
- (e) (A-C)'
- (f) $(A \cap A')'$

3 Given
$$\mathscr{C} = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

 $A = \{1, 3, 5, 7\}$

 $B = \{1, 2, 3, 4\}$

 $C = \{2, 4, 6, 8\}$

List the elements of each of the following sets:

- $A \cap B$ (a)
- $A \cup B$ (b)
- A'(c)
- $(A \cap B) \cup C$ (d)
- (e) $(A \cup C) \cap (B \cup C)$
- $(A-B)\cap (A-C)$
- 4 Determine if the set

$$A = \{x | x \in Q \mid \sqrt{2} < x < \sqrt{3} \}$$

is an empty set.

- 5 If $A = \{1, 0\}$, state if the following statements are true or false.
 - (a) $0 \in A$
- (d) $\phi \subset A$
- $\{0\} \in A$ (b)
- (e) $\{0\} \subset A$
- (c) $\phi \in A$
- (f) $0 \subset A$
- 6 (i) List all the subsets of $\{\phi\}$.
 - (ii) Is the set $\{\phi\}$ an empty set?
 - (iii) Is the statement $\phi \subseteq \{\phi\}$ true?
 - (iv) Is the statement $\{\phi\} \subseteq \phi$ true?

7 Given
$$\mathscr{E} = \{x | -8 \le x < 15, x \in \mathbb{R} \}$$

 $A = \{x \mid -3 \le x < 10, x \in \mathbb{R} \}$

 $B = \{x \mid -5 \le x < 6, x \in \mathbb{R}\}$

 $C = \{x \mid -7 \le x < 8, x \in \mathbb{R}\}$

Write down each of the following set:

- (a) $A \cup B \cup C$
- (b) $(A \cup B) \cap C$
- $(A-B)\cap C$ (c)
- (d) $(A \cap B) - C$
- $A' \cap B' \cap C'$
- Using the algebraic laws of sets, show 8 that, for any set A and set B,
 - (i) $A \cup (A' \cap B) = A \cup B$
 - (ii) $(A \cup B) \cap (A \cup B') = A$
- For any set A and set B, verify the following 9 results using the algebraic laws of sets.
 - (i) $A \cap (A' \cap B)' = A$
 - (ii) $(A \cap B) \cup (A \cap B') = A$

- 10 For any set *P* and set *Q*, verify the following results using the algebraic laws of sets.
 - (i) $P \cap (P \cap Q)' = P \cap Q'$
 - (ii) $P \cup (P' \cup Q)' = P$
- 11 For any set *A* and set *B*, verify the following results using the algebraic laws of sets.
 - (i) $A (B \cup C) = (A B) \cap (A C)$
 - (ii) $A (B \cap C) = (A B) \cup (A C)$
- 12 Using the algebraic laws of sets, prove that for any set *A* and set *B*,
 - (i) A B = B' A'
 - (ii) $A' B = (A \cup B)'$
- 13 For any sets A, B, and C, use the algebraic laws of sets to prove that

$$A\cap (B-C)=(A\cap B)-(A\cap C)$$

14 For any sets A and B, use algebraic laws of sets to show that

$$(A-B)\cup(B-A)=(A\cup B)-(A\cap B)$$

15 Given
$$A \cup B = \{1, 2, 3, 4, 5\}$$

 $A \cup C = \{1, 2, 3, 4, 5, 7\}$
 $A \cap B = \{2, 4\}$
 $A \cap C = \phi$

 $B \cap C = \{1, 3, 5\}$

Write down sets A, B, and C.

16 Using a Venn diagram, show that the result $A \cup (B - C) = (A \cup B) - (A \cup C)$ is not true.

17

In the Venn diagram above, shade the areas that represent:

- (a) B-A
- (c) $A \cap B'$
- (b) $A' \cup B$
- (d) A' B'

18

In the Venn diagram above, shade the areas that represent:

- (a) Q P
- (c) $P \cap Q'$
- (b) P' U Q
- (d) P'-Q'
- 19 In a class of 40 pupils, 17 will sit for the Mathematics paper, 18 will take the Physics paper, 6 will sit for Physics and Chemistry, 14 will take Mathematics but not Chemistry, 8 will take Mathematics only, 7 will take Mathematics and Physics, and 2 will not take Mathematics, Physics and Chemistry.

Find the number of pupils who will take Chemistry.

20 You have three sets A, B and C.

If
$$A \cap B = \{c, e\}$$

 $B \cap C = \{a, d\}$
 $A \cap C = \phi$
 $B - C = \{c, e, f, h\}$
 $C - B = \{b\}$
 $A \cup C = \{a, b, c, d, e, g\}$

write the sets A, B, and C.

Numbers and Sets III

- (a) $\{b, d\}$
- (b) $\{a, c\}$
- (c) $\{e\}$
- (d) {c}
- (e) {e}
- (f) $\{a\}$
- (g) {c}
- (a)
- (b) $\{b, d, f\}$
- $\{a, c, e\}$ (c) $\{a, c, e\}$
- (d) $\{b, d, f, g\}$
- (e) $\{b, d, f, g\}$
- (f) E
- (a) {1, 3}
 - (b) {1, 2, 3, 4, 5, 7}
 - {2, 4, 6, 8} (c)
 - (d) {1, 2, 3, 4, 6, 8}
 - (e) {1, 2, 3, 4, 6, 8}
 - {5, 7} (f)
- 4 No
- (a)
- (b) False
- True (c) False
- (d) True
- (e) True
- (f) False
- (i) ϕ , $\{\phi\}$
- (ii) No
- (iii) Yes
- (iv) No
- $\{x \mid -7 \le x < 10, x \in \mathbb{R}\}$ (a)
 - (b) $\{x \mid -5 \le x < 8, x \in \mathbb{R}\}$
 - (c) $\{x \mid 6 \le x < 8, x \in \mathbb{R}\}$
 - (d) **φ**
 - (e) $\{x \mid -8 \le x < -7 \text{ or }$

$$10 \le x < 15, x \in \mathbb{R}$$

- 8
- 9
- 10
- 11
- 12
- 13
- 14
- $A = \{2, 4\}$ 15

$$B = \{1, 2, 3, 4, 5\}$$

$$C = \{1, 3, 5, 7\}$$

Answers

17

(a) B-A

- (c) $A \cap B'$
- (d) A'- B'

(a) Q - P

- $P \cap Q'$ (c)
- (d) P'-Q'
- 18 people 19
- $A = \{c, e, g\}$ 20 $B = \{a, c, d, e, f, h\}$ $C = \{a, b, d\}$