SYpNEY GRAMMAR SCHOOL
MATHEMATICS DEPARTMENT
TRIAL EXAMINATIONS 2007

FORM VI

MATHEMATICS EXTENSION 1

Examination date
Monday 6th August 2007

Time allowed
2 hours (plus 5 minutes reading time)

Instructions

All seven questions may be attempted. '
All seven questions are of equal value.

All necessary working must be shown. .

Marks may not be awarded for careless or badly arranged work.

Approved calculators and templates may be used.

A Iist of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet.

Hand in the seven questions in a single well-ordered pile.

Hand in a booklet for each question, even if it has not been attempted.
If you use a second booklet for a question, place it inside the first.

Keep the printed examination paper and bring it to your next Mathematics lesson.

Checkliist .
SGS booklets: 7 per boy. A total of 1000 booklets should be sufficient. 14
Candidature: 117 boys.

Examiner
MLS
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QUESTION ONE (12 marks) Use 2 separate writing booklet.

(a) I (z — 2) is a factor of the polynomial
Plz)=22+z+a,
find the value of a.

(b) Given that log, b = 2-8 and log, ¢ = 41, find log, &.

<

' (c) Shade the region on the number plane satisfied by y > |= +2].
. . 5
(d) Solve the inequality P >1.

{e) State the domain and range of y = cos™*

RS

3
dz
(f) Evaluate \/0 m .

QUESTION TWO (12 marks) Use a separate writing booklet.

sin &
; 3
(a) Evaluate J%moo vl

(b) The point A has coordinates (—2,1) and the point B has coordinates (b, —3).

The point P(13,—9) divides the interval AB externally in the ratio 5: 3.
Find the value of b.

(¢) Using the substitution u = e”, find

e:c
.
/ V31—
(d) (i) Write down an expression for tan 2z in terms of tan .

(i) Hence show that if f(z) = z cot =, then f(2z) = (1 — tan® z) f(z).

(e) Find the coefficient of 2° in the expansion of (2 — 5z)°.

QUESTION THREFE (12 marks) Use a separate writing booklet.

(a) Differentiate cos™ 2.

.

2
(b) Show that /(; cos®zdr = T.

Exam continues next page ...
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(©)

N
w’

Two circles with equal radii and centres A and C touch externally at F as shown in
the diagram. The lines BC and DC are tangents from C to the circle with centre A.

(1) Explain why ABCD is a cyclic quadrilateral.

(if) Show that F is the centre of the circle that passes through 4, B, C and D.
(iii) Show that /ZBCA = /DCA = 30°.
(iv) Deduce that ABCD is equilateral.

(o] [ [9] 2]

2

QUESTION FOUR (12 marks) Use a separate writing booklet. M

arks
1
a) The region between the curve ¥y = —————— and the z-axis is rotated about the |3
(#) The xeg V= e "
z-axis. Find the volume of the solid enclosed between z = —\% and z = 2v/3.
4
(b) Use the substition u = z — 3 to evaluate / zvz — 3dz.
3

(¢) A metal rod is taken from a freezer at —8°C into a room where the air temperature

is 22°C. The rate at which the rod warms follows Newton’s law, that is
dar
= —k(T — 22)

where k is a positive integer, time ¢ is measured in minutes, and temperature 7’ is
measured in degrees Celsius.

(i) Show that T = 22 — Ae™** is a solution of the equation %i: = —k(T — 22), and
find the value of A.

(if) The temperature of the rod reaches 4°C in 90 minutes. Find the exact value of k.

(i) Find the temperature of the rod after another 90 minutes.

Exam continues overleaf ...
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QUESTION FIVE (12 marks) Use a separate writing booklet. Marks
(a) A particle is moving in a straight line so that its displacement 2 at time ¢ seconds is

given by © = /3 cos 2¢ — sin 2t metres.

(i) Write z = v/Bcos2t — sin2¢ in the form z = Rcos(2t + o), where B > 0 and
0<a<2r.

(i1) When is the particle first at z = 17

]

{ﬁi) What is the maximum velocity of the particle and when does it first occur?

(b) (i) Show that ® — z — 2 = 0 has a root between z = 1 and z = 2.

(o] (=] ] [=]

(ii) Given that z = 1.5 is your first approximation to a root of 3 — 2 — 2 = 0, use
one application of Newton’s method to find another approximation. Give your
answer correct to one decimal place.

(c) A particle is moving in simple harmonic motion on a straight line. Its velocity v is
given by v? = 4(2z — 2?), where  is its displacement from a fixed point O on the line.

(i) Show that its acceleration is given by & = —4(z ~ 1).

(1) Find the centre of the motion.

(iii) Find the displacement of the particle when its speed is half the maximum speed. ;

QUESTION SIX (12 marks) Use a separate writing booklet. Marks

(a) The length of a rectangle is increasing at 6 cm s, while the breadth is decreasing so
that the area of the rectangle remains constant at 50 cm®. Find the rate of change of
the breadth when the length is 10c¢m.

(b) (i) Use the method of mathematical induction to show that if z is a positive integer, '
then (1 + )™ — 1 is divisible by x, for all positive integers n > 1.

(if) Write 12" — 4™ — 3™ 41 as a product of two factors. :

(iif) Use parts (i) and (ii) to deduce that 12" — 4™ — 3" + 1 is divisible by 6 for all

integers n > 1.

(¢) The quadratic equation az? + bz + ¢ = 0 has roots ¢ = tan o and z = tan .

(i) Show that tan(a + ) = p E .
¥ —4dac

- 2, _ gy 2 4ac

(i) Show that tan®*(c — ) o

Exam continues next page ...
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QUESTION SEVEN (12 marks) Use a separate writing booklet. Marks
(a) Find the value of n if
"Co + "Gy +"Co = 37.
A
(®)

o x

In the diagram above, a particle is projected at an angle of elevation o with velocity
V from a point O which is at the bottom of an inclined plane. The plane is inclined
to the horizontal at an angle 8, where & < . The particle meets the inclined plane
again at R. The acceleration due to gravity is g, and 0° < o < 90°. Let OR=d.

(i) Given that x = Vicosa and y = Visina — %gtz, where ¢ is the time elapsed,
show that the Cartesian equation of the path of the particle is

y=zxtana — gxf";fe—_g_a_'
(i) Find expressions for the coordinates of R in terms of § and d. o
(iii) Show that the range of the particle up the inclined plane is given by 5,“
de 2V2 cos asin(e — 6)
geos? 0

(c) Consider the identity (1 +2)" = 1+ "Cy % + "Co 2 + "C3%® + --- + "Cy'z™, where
n is a positive integer.

(i) Use the formula for the sum of a GP to simplify

(=]

1+0+2)+Q+aP +Q+2)P 4+ -+ Q+2)" N
(ii) Use part(i) to show that
1+ (140)+(1+z)2 + 14+2)P 4+ -+ A+ ="Cr+"Coa+"Ca 22 +- -+ "Cp 2™ L,

(=]

(=]

0
(iii) Find / Oy 4+ "Coz +"Cax o+ "Cr ™
-1
)7‘-!-1

k3 _ T 1
(iv) Hence show that Z g——”Cr = z -

r=1 r=1

END OF EXAMINATION
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