The Complex Roots of Unity

Question One

If $z^5 = 1$,

- a) Use de Moivre's theorem to find the five complex solutions in mod/arg form.
- b) Plot these solutions on an Argand diagram as $1, z_1, z_2, z_3, z_4$
- c) If $z_1 = \alpha$, show that $z_2 = \alpha^2$, $z_3 = \alpha^3$ etc
- d) Show $\alpha^5 = 1$
- e) Show that $1+\alpha+\alpha^2+\alpha^3+\alpha^4=0$
- f) If $z_2 = \beta$, express all the solutions in terms of β
- g) The roots plotted in part b) form a pentagon. Find the length of each side and the area of the pentagon.
- h) Form the quadratic equation with roots $\alpha + \alpha^4$ and $\alpha^2 + \alpha^3$

We note the following about the complex roots of unity (i.e. one);

- a) The roots of $z^n = 1$ are; $z = cis(\frac{2k\pi}{n}), k = 0, 1, 2, ...(n-1)$
- b) On an Argand diagram, the *n*th roots of 1 are the vertices of a regular polygon of *n* sides, centered at the origin. The distance from the origin to each vertex is 1 unit.
- c) If n is even, two roots of $z^n 1 = 0$ are real (± 1) .
- d) If n is odd, only one root of $z^n 1 = 0$ is real (1)
- e) If w is the complex root with the smallest positive argument, then the complete set of roots is $1, w, w^2 \dots, w^{n-1}$
- g) $1+w+w^2+...+w^{n-1}=0$ (Either sum roots or sum GP)

The Complex Roots of -1

Question Two

If $z^5 = -1$;

- a) Use de Moivre's theorem to find the five complex solutions in mod/arg form
- b) Plot these solutions on an Argand diagram as $-1, z_1, z_2, z_3, z_4$
- c) If α is a complex root with the smallest positive argument show the other roots are $\alpha^3, \alpha^5, \alpha^7, \alpha^9$

Set Work

- 1. Patel Exercise 4I, questions 7-9 plus
- 2. Given the following;
 - a) If n odd

$$z^{n}-1=(z-1)(z^{n-1}+z^{n-2}+....+z+1)$$

PTO

E.g.
$$(z^5-1)=(z-1)(z^4+z^3+z^2+z+1)$$

b) If n even

$$\overline{z^{n} - 1} = (z - 1)(z + 1)(z^{n-2} + z^{n-4} + \dots + z^{2} + 1)$$
E.g. $z^{8} - 1 = (z - 1)(z + 1)(z^{6} + z^{4} + z^{2} + 1)$

Find; a)
$$z^4 - 1$$
 b) $z^3 - 1$ c) $z^6 - 1$

h)
$$z^3 - 1$$

c)
$$z^6 - 1$$

d)
$$z^7 - 1$$

e)
$$z^{10} - 1$$

Hints on Exercise 4I questions 7 – 9

7 a, b Similar to solving $z^5 = 1$ above. Note that $w^3 = -1$.

7c use you answers from 7b

8a If w is a complex root of $z^n - 1 = 0$ then $w^n = 1$. The roots are shown on an Argand Diagram below.

Thus
$$(z^n - 1) = (z - w^n)(z - w)...(z - w^{n-2})(z - w^{n-1})$$

8b Assume n odd then from the supplementary notes for sheets 9-10 use

$$z^{n}-1=(z-1)(z^{n-1}+z^{n-2}+....+z+1)$$

8c Substitute z = 1 into the expression deduced in 8b

9 Refer to Complex Numbers 5, 6.

9a Use you answers from Q7

- 1. First factorise (z^6-1) using the difference of two squares.
 - 2. Now complete the factorisation using the sum and difference of two cubes.
 - 3. Divide both sides by (x-1)(x+1) to obtain $z^4 + z^2 + 1$.
 - 4. Substitute answers from 9a to complete the question.

Answers to 2 above

a)
$$(z^4-1)=(z-1)(z+1)(z^2+1)$$
 b) $(z^3-1)=(z-1)(z^2+z+1)$

c)
$$(z^6-1)=(z-1)(z+1)(z^4+z^2+1)$$

d)
$$(z^7 - 1) = (z - 1)(z + 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)$$

e)
$$(z^{10}-1)=(z+1)(z-1)(z^8+z^6+z^4+z^2+1)$$