SYDNEY GIRLS HIGH SCHOOL

YEAR 10 MATHEMATICS

Common Test 1

March 2003

Time allowed: 60 minutes

Topics: Geometry, Probability and Quadratic equations

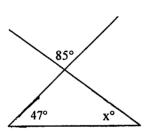
Instructions:

- There are Five(5) questions. Questions are of equal value.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work.
- Start each question on a new page. Write on one side of the paper only.

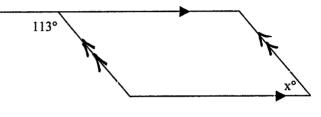
Name:	
-------	--

QUESTION ONE (12 Marks)

a) Solve the following equations


i)
$$(y-3)(y+1)=0$$

ii)
$$1 - x^2 = 0$$


iii)
$$3a^2 = a$$

- b) In an international tennis competition, there are 5 Australian competitors in a field of 16. If the names for the first round matches are drawn randomly, what is the probability that two Australians will be drawn first.
- c) Find the value of x in each of the following, reasoning not required.

i)

ii)

QUESTION TWO (12 Marks)

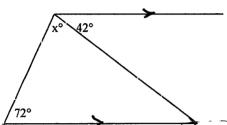
a) Solve the following equations

i)
$$x^2 - 2x - 15 = 0$$

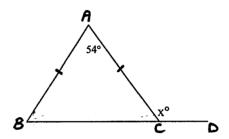
ii)
$$10x^2 + 3x - 4 = 0$$

iii)
$$y + \frac{2}{y} = \frac{9}{2}$$

- b) In a class of 30 students, there are 21 who like geometry and 16 who like trigonometry. If 6 students don't like either, draw a Venn diagram and find the probability that a student likes both.
- c) The probability that three students, Adele, Cathy and Lili will pass their year 10 Science exam is $\frac{6}{7}$, $\frac{3}{4}$ and $\frac{2}{3}$ respectively.
 - i) What is the probability that all three will pass?
 - ii) What is the probability that only Cathy passes the exam?


QUESTION THREE (12 Marks)

a) Solve the following equation by completing the square.

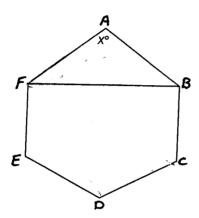

$$x^2 - 2x = 5$$

b) Find the value of x in each of the following, giving reason.

i)

ii)

c) Use the quadratic formula to solve $-5x^2 + 7x = -3$. Give your correcto two decimal places.


QUESTION FOUR (12 Marks)

- a) A bag contains 4 red balls and 6 green balls. A ball is selected at random.
 - i) What is the probability that the ball is green?
 - ii) What is the probability that the ball is red or green?
 - iii) What is the probability that the ball is not green?
 - iv) The first ball is removed and replaced with a ball of the other colour, and then a second ball is randomly selected. Draw a probability tree diagram to show the outcomes.
 - v) What is the probability that both balls selected are red?
 - vi) Find the probability that the second ball selected is red.
- b)The sum of the squares of two consecutive even positive integers is 452. Find the integers. (let the first number be n)

QUESTION FIVE (12 Marks)

a) Solve
$$\frac{18}{2x+1} = \frac{5+x}{x}$$

b) A diagonal of this regular hexagon has been drawn. Find the value of x and y. Give reasons.

- c) In triangle ABC, angle B equals to angle C. A perpendicular is drawn from A to BC, meeting it at D.
 - i) Draw a neat sketch of these information
 - ii) Prove that triangles ABD and ACD are congruent.
 - iii) Hence or otherwise show that the perpendicular AD, bisects BC.

|(a)(i)
$$(y-3)(y+1)=0$$

 $y-3=0$ or $y+1=0$
 $y=3$ or $y=-1$
|(ii) $1+x^2=0$
 $(1-x)(1+x)=0$
 $1-x=0$ or $1+x=0$
 $1-x=0$ or

$$|0 (5x+4)(2x-1)| = 0$$

 $2y^{2} + 4 = 9y$ $2y^{2} - 9y + 4 = 0$

Think of two numbers whose:

Product = 8 Sum = -9the numbers are -8 and -1 (2y - 8)(2y - 1) = 0 2(y - 4)(2y - 1) = 0

义2(6)

a: Geometry T: Trigonometry

P(student uses both) =
$$\frac{13}{30}$$

1 . 1 3 , 1

Note: 1) mark given if you had written $\frac{6}{7} + \frac{3}{4} + \frac{2}{3}$

Question 5 (12 marks)

9) Solve by completing the square
$$\chi^2 - 2\chi = 5$$

 $\chi^2 - 2\chi + (-1)^2 = 5 + (-1)^2$

Note: half of the co-efficient of \times is -1

$$x^{2}-2x+1=6$$
 $(x-1)^{2}=6$
 $x-1=\pm \sqrt{6}$
 $x=1\pm \sqrt{6}$

(3) marus

$$(b)(1) \xrightarrow{A} 2^{\circ}$$

$$D \qquad (3) \text{ max } u \in S$$

One possible method:

he possible method:

$$\chi^{\circ}$$
 + 42° + 72° = 180° (co-interior L's and parallel lines)
i.e. AB IIDC
 $\chi = 180-114$
= 66°

Another method: LACD= 420 (alternate 1's and A BILDC)

$$2y + 54^{\circ} = 180^{\circ}$$
 (angle sum of Δ)
 $2y = 180^{\circ} - 54^{\circ}$
 $= 126^{\circ}$
 $y = 63^{\circ}$

y+
$$x^{\circ}$$
 = 180° (supplementary)
 $x = 180-63$

OR/ LABC = LACB = y (base angles of)

$$2y+54=180$$
 (angle sum of a)
 $y=630$

=1170

$$63^{\circ}+54^{\circ}=x^{\circ}$$
 (extenor angle of Δ)
$$117=x$$

(c)
$$-5x^2+7x=-3$$

 $-5x^2+7x-3=0$ $a=-5$ b=7 c=-3

$$-5x^{2}+7x-3=0 \quad a=-5 = 7 = -5$$

$$x = -b \pm \sqrt{b^{2}-4ac}$$
2a 3 marks

$$= -7 \pm \sqrt{40 - 4(-5x - 3)}$$

(a) (i)
$$P(green) = \frac{6}{10}$$

= $\frac{3}{5}$

(V)
$$P(both red) = P(RR)$$

= $\frac{4}{10} \times \frac{3}{10}$
= $\frac{12}{100}$
= $\frac{3}{25}$

(vi)
$$P(2^{nq} \text{ ball is red}) = P(GR \text{ or } RR)$$

= $\left(\frac{6}{10} \times \frac{5}{10}\right) + \left(\frac{4}{10} \times \frac{3}{10}\right)$
= $\frac{3}{10} + \frac{3}{25}$

and n+2 be the second number

$$(n)^{2} + (n+2)^{2} = 452$$

$$n^{2} + n^{2} + 4n + 4 = 452$$

$$2n^{2} + 4n - 448 = 0$$

$$n^{2} + 2n - 224 = 0$$

$$(n + 16)(n - 14) = 0$$

$$n+16 = 0 \text{ or } n-14 = 0$$

$$n=14$$

n must be positive

: the numbers are

n=14

and n+2=14+2

=16

i.e. 14 and 16

(a) Solve $\frac{18}{2x+1} = \frac{5+x}{x}$

$$18x = (5+x)(2x+1)$$

$$18x = 10x+5+2x^{2}+x$$

$$0 = 2x^{2}+11x-18x+5$$

$$0 = 2x^{2}-7x+5$$

Think of two numbers whose:

product = 10

sum = -7

the numbers are -5 and -2 $\frac{(2x - 5)(2x - 2)}{2} = 0$ $\frac{(2x - 5) \cancel{x}(x - 1)}{\cancel{x}} = 0$

$$(2x-5)(x-1) = 0$$

 $2x-5=0$ or $x-1=0$
 $2x=5$ or $x=1$
 $x=\frac{5}{2}$

(b) angle sum of a hexagon = $(6-2) \times 180^{\circ}$ = $4 \times 180^{\circ}$ = 720°

$$x = \frac{720^{\circ}}{6}$$
= 120°

$$\angle AFB = \angle ABF = y^{\circ}$$
 (base angles of)
 $2y + 120 = 180^{\circ}$ (angle sum)

 $2y + 120 = 180^{\circ}$ (angle sum) $2y = 60^{\circ}$ $y = 30^{\circ}$ or

In Δ 's ABO and ACD

(ii) $\angle ABD = \angle ACD$ (given)

AD is common $\angle ADB = \angle ADC = 90^{\circ} (AD \bot BC)$ $\therefore \triangle ABD = \triangle ACD$ (AAS)

(iii) Hence or otherwise show that the perpendicular AD bisects BC BD = DC (corresponding sides of congruent 1/5)

-. AD biseds BC