

Sydney Girls High School

YEAR 11

MATHEMATICS EXTENSION 1

Yearly Examination 2010

Time Allowed: 70 minutes

Total Marks: 68

Topics: Harder 2U, Introductory Calculus, Further Calculus, Probability, Sequences and Series, Induction and the Second Derivative and Applications of Calculus.

Instructions:

- ♦ Attempt ALL questions
- ♦ There are 4 questions, each worth 17 marks.
- ◆ Show all necessary working. Full marks may not be awarded for careless or incomplete working.
- ♦ Begin each question on a new page.
- Diagrams are NOT to scale.

Name:	-	 	Class:	, \$	ge

UES	TION 1	Marks
a)	Differentiate: $y = 3x^4 - 2x^3 + 4$	2
b)	In the arithmetic series $3+8+13+18+$, find:	
	i. the 20 th term.	1
	ii. the sum of the first 20 terms.	2
	iii. the sum of the 21 st to 30 th term.	2
c)	A six-sided die is rolled four times. What is the probability that the number 6 does not appear in the four rolls?	2
d)	Solve: $\frac{9}{x+4} \le 2$ and graph the solution on a number line	3
e)	In a geometric series, the 3 rd term is -8 and the 6 th term is 216. Find the first term and the common ratio.	3 .
	A and B are the points (-5, 12) and (4, 9) respectively. Find the co-ordinates of the point P which divides AB externally in the ratio 5:2.	2

QUESTION 2 (Begin a new page)

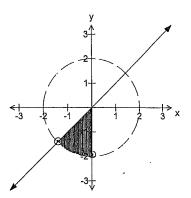
Marks

2

2

a) Evaluate:
$$\lim_{x \to \infty} \frac{3x^2 + 2x - 7}{6x^2 + 5}$$

- b) The probability that Jack will pass a Maths test is 0.8, an English test 0.7, and a Science test 0.9. When he sits for the three tests, find the probability that Jack passes:
 - i. Exactly one of the three tests.
 - ii. At least one of the three tests.
- c) Write down three inequalities which represent the shaded region below: 3



- d) Consider the function $f(x) = 2x^3 9x^2 + 12x + 1$ in the domain $0 \le x \le 3$.
 - i. Find the stationary points and determine their nature.
 - . Find any point(s) of inflexion.
 - iii. Draw a sketch of the graph y = f(x) in the domain $0 \le x \le 3$.

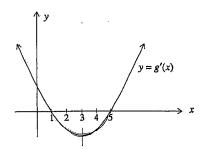
QUESTION 3 (Begin a new page)

Marks

2

- (a) Find the primitive function of $4x^2 3 \frac{3}{2x^2}$.
- b) Find the gradient of the normal to the curve $y = \frac{3x-5}{2x+3}$ at x = -1.

c)



The diagram shows the gradient function y = g'(x) of the graph y = g(x).

- . What features of the graph of y = g(x) would you find at x = 1 and at x = 5.
- ii. For what values of x is the graph y = g(x) decreasing? 2
- iii. Sketch a possible graph for y = g(x) given that y = g(x) passes through the origin.
- d) A farmer is building a wheat silo in the shape of a cylinder, closed at both ends with radius r metres and height h metres. The silo is to be made from galvanised iron sheeting and is to have a volume of 300 cubic metres.
 - i. Find an expression for the height of the silo in terms of r. 1
 - ii. Show that the surface area A, of the silo is given by the equation: $A = 2\pi r^2 + \frac{600}{r}$
 - iii. Hence find the minimum area of galvanised iron sheeting needed to make the silo, leaving your answer in exact form.

3

QUESTION 4 (Begin a new page)

Marks

a) Differentiate: $g(x) = 2x^4(3x-2)^6$. Give your answer in simplest factored form.

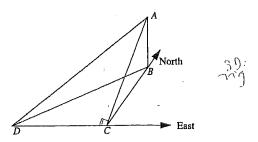
- 3
- b) Use the principle of mathematical induction to prove that for $n \ge 1$:

$$3+6+9+....+3n=\frac{3n}{2}(n+1)$$

- c) Kerry deposits \$150 into a superannuation fund on January 1st 2001. She makes further deposits of \$150 on the first of each month up to and including December 1st 2010. The fund pays interest at 9% p.a., compounded at the end of each month. Find:
 - i. How much was in the fund on January 31st 2001.

- 1
- ii. How much the first deposit of \$150 is worth on December 31st 2010.
- iii. The total amount in the fund on December 31st 2010.

d)



The angle of elevation of the top A of a building from a point C due south of it is 25° . At a second point D, which is 160 metres due west of C, the angle of elevation of the top of the building is 20° . Point B is the base of the building and on the same horizontal plane as D and C.

- i. Copy and complete the diagram adding all the given information.
- ii. Find the height AB of the building to the nearest metre.

-- END OF EXAM --

1

Year 11 Mathematics Extension 1

Yearly Examination 2010, SOLUTIONS

Question 1

$$(a) \qquad \frac{dy}{dx} = 12x^3 - 6x^2$$

(b)
$$a = 3, d = 5$$

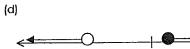
(i)
$$T_{20} = a + (n-1)d$$

= 3+19×5
= 98

(ii)
$$S_{20} = \frac{n}{2}(a+l)$$
$$= \frac{20}{2}(3+98)$$
$$= 1010$$

(iii)
$$S_{30} = \frac{n}{2} (2a + (n-1)d)$$
$$= \frac{30}{2} (2 \times 3 + 19 \times 5)$$
$$= 2265$$
$$S_{30} - S_{20} = 1515 - 1010$$
$$= 1255$$

(c)
$$P(\text{no six in four tosses}) = \left(\frac{5}{6}\right)^4$$
$$= \frac{625}{1296}$$



(e)
$$T_3 = -8, T_6 = 216, a = ?, r = ?$$

$$ar^5 = 216$$

$$ar^2 = -8$$

$$r^3 = -27$$

$$r = -3$$

$$a = \frac{-8}{r^2} = -\frac{8}{9}$$

(f)
$$(-5,12)$$
 $(4,9)$
 $-5:2$
 $P = \left(\frac{-5 \times 2 - 5 \times 4}{-5+2}, \frac{-5 \times 9 + 2 \times 12}{-5+2}\right)$
 $= (10,7)$

$$\begin{cases} \text{(a)} & \lim_{x \to \infty} \frac{3x^2 + 2x - 7}{6x^2 + 5} \\ &= \lim_{x \to \infty} \frac{3 + \frac{2}{x} - \frac{7}{x^2}}{6 + \frac{5}{x^2}} \\ &= \frac{3}{6} = \frac{1}{2} \end{cases}$$

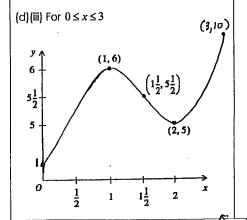
(b

(i)
$$P(M\overline{ES})+P(\overline{MES})+P(\overline{MES})$$

= $(0.8 \times 0.3 \times 0.1) + (0.2 \times 0.7 \times 0.1)$
+ $(0.2 \times 0.3 \times 0.9)$
= 0.092
= $\frac{23}{250}$

(ii) P(1-failing all tests)
=1-(0.2×0.3×0.1)
=0.994
=
$$\frac{497}{500}$$

(c)
$$x^2 + y^2 < 4$$
$$y \le x$$
$$x \le 0$$



(d)(i) Let
$$y = f(x) = 2x^3 - 9x^2 + 12x + 1$$

$$\frac{dy}{dx} = 6x^2 - 18x + 12$$

Stationary points when $\frac{dy}{dx} = 0$

$$6x^2 - 18x + 12 = 0$$
$$6(x-1)(x-2) = 0$$

$$x=1$$
 or $x=2$
When $x=1$, $y=2(1)^3-9(1)^2+12(1)+1$

= 6
When
$$x = 2$$
, $y = 2(2)^3 - 9(2)^2 + 12(2) + 1$

Stationary points at (1, 6) and (2, 5).

$$\frac{d^2y}{dx^2} = 12x - 18$$

When
$$x = 1$$
, $\frac{d^2y}{dx^2} = -6 < 0$:: concave down

.. maximum turning point at (1, 6)

When
$$x = 2$$
, $\frac{d^2y}{dx^2} = 6 > 0$:: concave up

.. minimum turning point at (2, 5).

(ii) For point of inflexion
$$\frac{d^2y}{dx^2} = 0$$

When
$$12x - 18 = 0$$

 $x = \frac{3}{2} = 1\frac{1}{2}$

When
$$x = 1\frac{1}{2}$$
, $y = 2\left(\frac{3}{2}\right)^3 - 9\left(\frac{3}{2}\right)^2 + 12\left(\frac{3}{2}\right) + 1$
 $y = 5\frac{1}{2}$

Sign change test:

_			
x	1	11/2	2
$\frac{d^2y}{dx^2}$	<0	0	>0

 \therefore point of inflexion is $\left(1\frac{1}{2}, 5\frac{1}{2}\right)$

Question 3

(a)
$$\frac{4x^3}{3} - 3x + \frac{3}{2x} + C$$

(b)
$$y = \frac{3x-5}{2x+3}$$

$$\frac{dy}{dx} = \frac{(2x+3)(3) - (3x-5)(2)}{(2x+3)^2}$$
$$= \frac{6x+9-6x+10}{(2x+3)^2}$$
$$= \frac{19}{(2x+3)^2}$$

Gradient of tangent =
$$\frac{19}{(2 \times -1 + 3)^2} = 19$$

 $\therefore \text{Gradient of normal} = \frac{-1}{19}$

(C) (i) Consider x = 1:

х	1-	1	1+
g'(x)	>0	0	<0

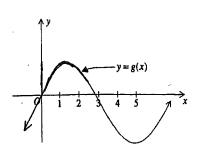
 \therefore at x = 1, g(x) is a local maximum. Consider x = 5.

х	5-	5	5+
g'(x)	<0	0	>0

At x = 5, g(x) is a local minimum

(ii) The curve is decreasing for 1 < x < 5.

(iii)



(d) (i)
$$V = \pi r^2 h$$
$$300 = \pi r^2 h$$
$$h = \frac{300}{\pi r^2}$$

(ii)
$$A = 2\pi r^{2} + 2\pi rh$$

$$= 2\pi r^{2} + 2\pi r \times \frac{300}{\pi r^{2}}$$

$$= 2\pi r^{2} + \frac{600}{r}$$

$$= \frac{2\pi r^{3} + 600}{r}$$

(iii)
$$\frac{dA}{dr} = 4\pi r - \frac{600}{r^2}$$
$$\frac{d^2A}{dr^2} = 4\pi + \frac{1200}{r^3}$$

When
$$\frac{dA}{dr} = 0$$
,

$$4\pi r = \frac{600}{r^2}$$
$$r^3 = \frac{150}{\pi}$$
$$r = \sqrt[3]{\frac{150}{\pi}}$$

which is a minimum since $\frac{d^2A}{dr^2} > 0$ when r > 0 .

Question 4

(a)
$$g(x) = 2x^{4}(3x-2)^{6}$$
$$g'(x) = v\frac{du}{dx} + u\frac{dv}{dx}$$

where: $u = 2x^4$ and $v = (3x-2)^6$

$$\frac{du}{dx} = 8x^3 \qquad \frac{dv}{dx} = 6(3x - 2)^5 \times 3$$
$$\frac{dv}{dx} = 18(3x - 2)^5$$

$$g'(x) = (3x-2)^6 \times 8x^3 + 2x^4 \times 18(3x-2)^5$$

$$= 8x^3(3x-2)^6 + 36x^4(3x-2)^5$$

$$= 4x^3(3x-2)^5 [2(3x-2) + 9x]$$

$$= 4x^3(3x-2)^5 [6x-4+9x]$$

$$= 4x^3(3x-2)^5(15x-4)$$

(b)

Step 1: Prove true for n=1

$$LHS = 3 \times 1 = 3$$

RHS =
$$\frac{3\times1}{2}(1+1) = \frac{3}{2}\times2 = 3$$

∴True for n=1,

Step 2: Assume true for n=k

$$3+6+9+...+3k = \frac{3k}{2}(k+1)$$

Step 3: Prove true for n=k+1

RTP:
$$3+6+9+...+3k+3(k+1) = \frac{3(k+1)}{2}(k+2)$$

LHS =
$$3+6+9+...+3k+3(k+1)$$

= $\frac{3k}{2}(k+1)+3(k+1)$
= $\frac{3(k+1)}{2}(k+2)$
= RHS

∴proven true for n=k+1

Step 4:

If true for n=k, then proven true for n=k+1. Proven true for n=1, and so proven true for n=2,etc. Hence by mathematical induction, statement is true for all integers n≥1.

(c)

(i)
$$A_1 = 150(1.0075)^1$$

= \$151.13 (nearest cent)

(ii)
$$A_{120} = 150(1.0075)^{120}$$

= \$367.70 (nearest cent)

(iii)
$$A_1 = 150(1.0075)^{120}$$

$$A_2 = 150(1.0075)^{119}$$

$$A_3 = 150(1.0075)^{118}$$
:
$$A_{120} = 150(1.0075)^{1}$$

:.Superannuation

$$= 150(1.0075)^{120} + 150(1.0075)^{119} + 150(1.0075)^{118} + \dots$$
$$\dots + 150(1.0075)^{1}$$

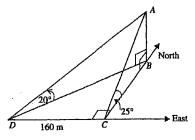
$$= 150(1.0075 + 1.0075^{2} + 1.0075^{3} + ... + 1.0075^{120})$$

$$= 150 \times 1.0075 \left[\frac{1.0075^{120} - 1}{1.0075 - 1} \right]$$

$$= 20150(1.0075^{120} - 1)$$

= \$29244.85(nearest cent)

(d)



In triangle ABC,
$$\frac{AB}{BC} = \tan 25^{\circ}$$

$$BC = \frac{AB}{\tan 25^{\circ}}$$

$$BC = AB \tan 65^{\circ} \dots (1)$$

In triangle
$$ABD$$
, $\frac{AB}{BD} = \tan 20^{\circ}$

$$BD = \frac{AB}{\tan 20^{\circ}}$$

$$BD = AB \tan 70^{\circ} \dots (2)$$

$$BD^2 = BC^2 + CD^2 \dots (3)$$

Substitute (1) and (2) into (3):

$$AB^2 \tan^2 70^\circ = AB^2 \tan^2 65^\circ + 160^2$$

 $AB^2(\tan^2 70^\circ - \tan^2 65^\circ) = 160^2$

$$AB^2 = \frac{160^2}{\tan^2 70^\circ - \tan^2 65^\circ}$$

$$AB = 93.159987...$$

.the building is 93 m high (nearest metre).