

SYDNEY GIRLS HIGH SCHOOL

2009

YEAR 11 HALF YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- Working time 1 hour
- Board approved calculators may be used.
- Diagrams are NOT drawn to scale.
- All necessary working should be shown in every question.
- Start each question on a new page.

<u>Total marks - 60</u>

- Attempt Questions 1 4.
- All questions are of equal value.

Question 1: (15 marks)

- a) Factorise $x^4y xy^4$ fully.
- b) Solve $x^2 5x 6 = 0$.
- c) Find the number of sides of a regular polygon if each interior angle is 172°.
- d) If $f(x) = 2 x^2$, find f(2t).
- e) If $\sin \alpha = \frac{2}{3}$ and α is an acute angle, find the exact value of $\cos \alpha$.
- f) Find x if $\cos(2x+5)^{\circ} = \sin(3x+10)^{\circ}$.

Question 2: (15 marks) START ON A NEW PAGE.

- a) Find the domain <u>and</u> range of each of the following functions:
 - 6

i)
$$4x-3y+2=0$$

ii)
$$y = x^2 + 4$$

iii)
$$y = \sqrt{4 - x^2}$$

- b) Determine whether the function $f(x) = 3x^2 4x$ is even, odd or neither.
- c) In the diagram, CT bisects $\angle ACB$. $AE \perp CT$ and M is the midpoint of AB. AE produced meets BC at point P.

i) Prove that $\triangle ACE = \triangle PCE$.

3

ii) Explain why AE = PE.

1

iii) Hence show that EM||PB.

2

Question 3: (15 marks) START A NEW PAGE.

- a) Draw a neat sketch of the function $y = 3 \frac{1}{x+1}$, showing all key features.
- b)
 i) Find the points of intersection of $y=x^2$ and x-y+2=0.
 - ii) Sketch both curves on the same number plane. 3
 iii) Shade the region satisfied by both $y \ge x^2$ and $x-y+2\ge 0$.
- c) A, B and C are three ships. The bearing of A from B is 45° and the bearing of C from A is 135°. AB = 8 km and AC = 6 km.
 - i) Copy the diagram onto your answer sheet, showing all given information.
 - ii) Find the bearing of *C* from *B*.

Question 4: (15 marks) START A NEW PAGE.

- a) Find the centre and radius of the circle given by $x^2 4x + y^2 + 4y + 4 = 0$
- b) A function is defined as follows:

$$f(x) = \begin{cases} x^2 & \text{for } x \le 1\\ 2 - x & \text{for } x > 1 \end{cases}$$

- i) Evaluate f(-2)+f(3).
- ii) Draw the graph of f(x).
- c) In $\triangle ABC$, $\angle ABC = 125^{\circ}$, $\angle ADB = 55^{\circ}$, AD = 12 cm and DC = 4 cm.

- i) Show that $\triangle ABC | | \triangle BDC$.
- ii) Find x, the length of BC.

3

d) Solve $\frac{4}{x+1} < 3$

END OF EXAM

2009 YEAR 11 EXTENSION 1 MATHEMATICS - HALF YEARLY SOLUTIONS

Question 1:

a)
$$x^4y - xy^4 = xy(x^3 - y^3)$$

= $xy(x - y)(x^2 + xy + y^2)$

b)
$$x^2 - 5x - 6 = 0$$

 $(x-6)(x+1) = 0$
 $x = 6, x = -1$

c) Ext
$$\angle = 180^{\circ} - 172^{\circ}$$

= 8°
No. sides = $360^{\circ} \div 8^{\circ}$
= 45

d)
$$f(x)=2-x^2$$

 $f(2t)=2-(2t)^2$
 $=2-4t^2$

e)

$$\cos\alpha = \frac{\sqrt{5}}{3}$$

f)
$$(2x+5)+(3x+10)=90$$

 $5x+15=90$
 $5x=75$
 $x=15$

Question 2:

- a) i. D: all real x R: all real y
 - ii. D: all real xR: $y \ge 4$
 - iii. D: $-2 \le x \le 2$ R: $0 \le y \le 2$

b)
$$f(x) = 3x^2 - 4x$$

 $f(-x) = 3(-x)^2 - 4(-x)$
 $= 3x^2 + 4x$
 $-f(x) = -3x^2 + 4x$

As $f(x) \neq f(-x)$ and $f(-x) \neq f(-x)$, f(x) is neither even nor odd.

- c) i. In $\triangle ACE$ and $\triangle PCE$: $\angle CEA = \angle CEP \quad (AE \perp CT; given)$ $\angle ACE = \angle PCE \quad (CT \text{ bisects } \angle ACB; given)$ CE is common $\therefore \triangle ACE = \triangle PCE \quad (AAS)$
 - ii. Corresponding sides in congruent triangles
 - iii. AM = BM (M is midpt of AB; given) AE = PE (proven) $\therefore EM || PB (\text{equal intercepts})$

or use "a line joining the midpoints of two sides of a triangle is parallel to the third side and half its length".

a) $y = 3 - \frac{1}{x+1}$

Vertical asymptote: x = -1

Horizontal asymptote: y = 3

x intercept (y=0): $x=-\frac{2}{3}$

y intercept (x=0): y=2

b) i)
$$y = x^2 - --(1)$$
 and $y = x + 2 - --(2)$

$$x^2 = x + 2$$

$$x^2 - x - 2 = 0$$

$$(x - 2)(x + 1) = 0$$

$$x = 2, x = -1$$
When $x = 2$: $y = 4$
When $x = -1$: $y = 1$
 \therefore Points of intersection are $(2,4)$ and $(-1,1)$

ii)

iii) See ii)

c) i

ii) $\tan \theta = \frac{6}{8}$ $\theta = 36.8699...^{0}$ $\approx 36^{0}52'$

Bearing of C from,B: $45^{\circ} + 36^{\circ}52'$ $\approx 082^{\circ}T$ (nearest degree) Question 4:

a)
$$x^2 - 4x + y^2 + 4y + 4 = 0$$

 $(x-2)^2 + (y+2)^2 = 4$

Centre: (2,-2)

Radius: 2 units

b) i)
$$f(-2) = (-2)^{2}$$
$$= 4$$
$$f(3) = 2 - 3$$
$$= -1$$
$$f(-2) + f(3) = 4 - 1$$
$$= 3$$

ii)

c) i)

$$\angle BDC = 125^{\circ}$$
 (adj. supp. \angle s)

∴ ∠ABC = ∠BDC

In $\triangle ABC$ and $\triangle BDC$:

$$\angle ABC = \angle BDC \text{ (proven)}$$

$$\angle ACB = \angle BCD \text{ (common)}$$

∴ ∆ABC ||| ∆BDC (equiangular)

ii)
$$\frac{x}{4} = \frac{16}{x} \text{ (corres. sides similar } \Delta s \text{ in same ratio)}$$
$$x^2 = 64$$
$$x = 8 \text{ (as } x > 0)$$

d)
$$\frac{4}{x+1} < 3$$
$$4(x+1) < 3(x+1)^{2}$$
$$3(x+1)^{2} - 4(x+1) > 0$$
$$(x+1)[3(x+1) - 4] > 0$$
$$(x+1)(3x-1) > 0$$
$$x < -1 \text{ or } x > \frac{1}{3}$$

