SYDNEY GIRLS HIGH SCHOOL

MATHEMATICS

Ext 1 (Ch 11,12,13,14,16)

Year 11 September 2001

Question 1

- (a) The point P divides the interval AB in the ratio 3:2.

 Given A(3,7) and B(-5,3) find the co-ordinates of P.
- (b) Solve: $\frac{2}{x-1} < 1$
- (c) A box contains 8 juggling balls: 3 red, 5 green. Kate takes two at random.

 What is the probability:
 - (i) they are both red?
 - (ii) they are the same colour?
 - (iii) they are different colours?

Question 2

- (a) Differentiate:
 - (i) $y = \frac{x+5}{3}$
 - (ii) $y = 3x^3 5x + 6$
 - (iii) $y = (24 x^2)^{-\frac{1}{2}}$
 - (iv) $y = \frac{x+2}{5-x}$
- (b) Find the equation of the tangent to $y = x 2x^{-1}$ at the point (-1,1).

Question 3

- (a) The curve of $y = x^2(x-3)$ is restricted to the domain $-3 \le x \le 4$.
 - Find the stationary points and determine their nature.
 - (ii) Find the point of inflection.
 - (iii) Find where the curve cuts the x axis.
 - (iv) Sketch the curve showing all relevant features.
 - (v) What are the maximum and minimum values of the function over the specified domain?
- (b) A large sweet box contains 'Caramello Koalas' and plain chocolate 'Koalas' in the ratio 3:2. Three are selected at random.

What is the probability of at least one plain chocolate Koala?

QUESTION 5

- a) From the top of a cliff 130 metres high the angle of depression to a boat at sea is 30°. A short time later, the angle of depression is 38°.
 - i) Draw a clear diagram showing all the given information.
 - ii) Find how far the boat has moved.
- b) Given $H(x) = x^2 3x + 2$, evaluate H(a+1)
- Determine whether the function $f(x) = x^3 \frac{1}{x}$ is odd, even, or neither, giving reasons.

QUESTION 6

- a) In the Cartesian plane, A is the point with coordinates (1,5),
 B has coordinates (7, -1), and O is the origin.
 - The interval OP is drawn so that it is perpendicular to AB, intersecting it at P.

Find

- i) the equation of AB
- ii) the gradient of OP, and hence the equation of OP
- iii) the coordinates of P
- iv) the length of interval AP
- Find the value of k so that the lines 3x + y 4 = 0 and 2x ky 3 = 0 intersect on the y-axis.

QUESTION 7

5

3

2

a) Find the perpendicular distance from the point A(-2, 3) to the line 4x + 3y + 9 = 0Hence, or otherwise, find the equation of the circle with centre A which has the line 4x + 3y + 9 = 0 as a tangent.

4

6

3

3

b) Joseph and Maria depart from the same location O. Joseph drives in a direction 050° at a speed of 80 km/h. Maria leaves 15 minutes after Joseph but travels in a direction SE of O at a speed of 100 km/h.

- i) How far does Joseph travel in 45 minutes?
- ii) Copy and complete the diagram showing the position of Joseph and Maria, 30 minutes after Maria's departure.
- iii) Hence, find the distance between them at this time.(to 2 significant figures)
- iv) What is the bearing of Joseph, as seen from Maria?

QUESTION 8

- a) Find the equation of the line through the point of intersection of x+3y-4=0 and 3x-4y+1=0, which also passes through the point (3,-1).
- b) The base of a triangle is 5 m longer than the altitude. If the area of the triangle is 52 m², find the altitude. (Hint: let the altitude be h metres)
- c) Prove that

$$\frac{(\cos\theta\cot\theta-\sin\theta\tan\theta)\sin\theta\cos\theta}{\cos\theta-\sin\theta}=1+\sin\theta\cos\theta$$

----- END OF EXAM-----

Year 11 Mathematics 82. a) 2.40701... a) x=180-71 ÷ 2·41 = 109 - b) i) 4y2-10yt b) 1) cos 135 = - cos 45° = 2y (2y-5t) 1i) 9x2-4p2 i) tan (60°) = -tanto _ = (3x+2p)(3x-2p) __ ") sin 570° = si 210° $(3 + \frac{3x-1}{3} + \frac{3x-1}{3})$ $= \frac{2x + 9x - 3}{6}$ c) 1) x2=6x-5 x2-6x+5=0 d) 1) 15 x 2 15 (x-5)(x-1)=0= 43 x 5 x 2 5 x= 5,1 = 2×5√3 = 10/3 ") 4-3x = 13 11) 3/18 + 4/12 -2/108 = 3 49x2 +4 +4x3 -2 36x3 = 9/2 + 8/3 - 12/3 = 813 - 312

: 1= sec 9 - tom 6)

 $tan 30^\circ = 130$ AB

4B = 130 +an30°

In OTAC

tan 38° = 130
A-C

BC = AB - AC = 130 - 130 Tan30° Tan38°

: distance = 58.7 m

 $\begin{array}{ll} 4(x) = x^{2} - 3x + 2 \\ 4(4) = (a+1)^{2} - 3(a+1) + 2 \\ = a^{2} + 2a + 1 - 3a - 3 + 2 \\ = a^{2} - a \end{array}$

c) $f(x) = x^3 - \frac{1}{x}$ $f(-x) = (-x)^3 = \frac{1}{-x}$ $= -x^3 + \frac{1}{x}$ $-f(x) = f(-x) = \frac{(x^3 - \frac{1}{x})}{x^3 - \frac{1}{x}}$ ae)

A (1,5) B(7,-1)

1) $m(AB) = \frac{5-1}{1-7} = \frac{6}{-6} = -1$

y-5 = -1(x-1) y = -x+1+5 y = -x+6

ii) OP L AB : m(OP)=1

y = x (2)

iii) AB intersects OP solve 1 1 2 simuld.

> y = x x = -x + 6 2x = 6 x = 3P(3, 3)

(v) $AP = \sqrt{(3-1)^2 + (3-5)^2}$ = $\sqrt{4 + 4}$ = $\sqrt{8}$ $AP = 2\sqrt{2}$ wints

b) 3x + y - 4 = 0 y - 1 x + 2 + 3 = 0 y - 1 x + 2 + 3 = 0 y - 1 x + 2 + 3 = 0 y - 1 x + 2 + 3 = 0y - 1 x + 2 + 3 = 0 Q7. 4x + 3y +9 =0 2=4, b=3, c=9

 $d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$

 $(-2, 3) = (x_1, y_1)$

 $d = \left| \frac{10}{5} \right| = 2$

for tangent: d = radius $(x + 2)^2 + (y - 3)^2 = 2^2$

 $-e.(x+2)^{2}+(y-3)^{2}=4$

b) 50° 60 m

1) 45min: 3×80 = 60 dustance = 60 km

 $JM^{2} = 50^{2} + 60^{2} - 2(50)(60)(60)(60)(60)$ $JM^{2} = 55 \cdot 17 \cdot 065 \cdot ...$ $JM = 74 \cdot 679 \cdot ...$

distance = 75 lem.

 $\frac{75}{51.85} = \frac{60}{51.00}$ $\frac{75}{51.85} = \frac{60}{51.00} = 0.796...$ $\frac{75}{75} = \frac{60}{51.00} = 0.796...$ $\frac{75}{530} = \frac{60}{51.00} = 0.796...$

Q8.

e) (x+3y-4)+k(3x-4y+1)=0subst (3,7) (3-3-4)+k(q+4+1)=0 -4+14k=0 $-1-k=\frac{2}{7}$ $(x+3y-4)+\frac{2}{7}(3x-4y+1)=0$ 7x+21y-28+6x-8y+2=0

(or pt. of miers. (1,1)

13x + 134 - 26 =0

x +y 1-2 =0

b) $\frac{1}{2} n(n+5)=52$ n(n+5)=104 $\frac{1}{2} n(n+5)=104$ $\frac{1}{2} n(n+5$

 $\frac{\cos 3 - \sin^{3} 0}{\cos 3 - \sin^{3} 0}$ $= \frac{\cos^{3} 0 - \sin^{3} 0}{\cos 3 - \sin^{3} 0}$

= 1 + sind cost = RHS NB(5=20+10520=1)