Sydney Girls High School

MATHEMATICS
HSC ASSESSMENT TASK 2
March 2006

Topics: Applications of the Second Derivative,
. Probability, Sequences and Series.

Time Allowed: 90 minutes

Instructions:
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There are five (5) questions of equal value.

Attempt all q'uestiohs.

Start each question on 2 new page.

Show all necessary working.

Marks may be deducted for careless or poor setting out.

Board approved calculators may be used. -

Total = 100 marks




QUESTION 1 (20 marks) Marks

(a) In a production line, a batch of 200 finished items are tested and 8 are

found to be faulty.

(i) - Whatis the probability that an item selected at random is faulty? 1
(i)  How many faulty items could be expected if a batch of 600 were 1
tested?

(b) The first three terms of an arithmetic series are 50, 43, 36.
) Find the common difference. 1
(i)  Write down a formula for the nth term.

(iti)  If'the last term of the series is —27, how many terms are there

2
in the series?
(iv)  Find the sum of the series. 2
(c) At Harbord High School the probability that Melissa is chosen as a prefect
is g The probability that Sarah is chosen as a prefect is j;i, whilst the
probability that Tara is chosen as a prefect is % . Find the probability that
out of the three girls:
(1) all three are chosen. A( 1
(11) only Sarah and Tara are chosen . 1
(iii)  at least one of the three is chosen. 1
(d) The sum of the first » terms of a sequence is given by S, =132n—4n".
) Find the sum of the first 7 terms 1
(i)  Find the sum of the first 6 terms 1
(iii)  Hence find the 7th ferm. 1
(&) If y=x*—3x*~7x-5, find:
2
0 2 oand f’_f |
dZ
(i)  the value of x for which 2} =0
| dx’ J
.. . . da*y
(iii)  the gradient of the tangent at the point where = =0 1
. . . da y
(iv)  the equation of the tangent at the point where e 0 )
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QUESTION 2 (20 marks) Marks

(a) In a group of 50 students there are 35 who watch the television show

Desperate Housewives and 27 who watch Lost, while 6 watch neither .
(M) Draw a Venn diagram using the information above. 9)
Find the probability that a student watches:
(i) both television shows. 1
(iii)  only Desperate Housewives. —_— ‘ ) 1

(iv)  at least one of the television shows. ‘ 1

(b) For what value(s) of x is the function f(x)= 2x* —3x* —12x+8: A
(i) concave upwards

(ii) concave downwards

(c) In a game, competitors must run 10 metres from the starting point, pick
up a ball, then run back to the start and place the ball in a bucket.
The competitor then runs to the next ball which is 2 metres further than
the first ball, picks that ball up, runs back to the start and places the ball

in the bucket. This process is repeated with each successive ball 2 metres

further than the previous one. -
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(1) How far does Bridget run if nine balls are placed in the bucket? 2

(i)  If Mark runs 644 metres in total to complete the race, how many balls

(O8]

were there?

() If f(x)=x"+ax’ +bx+3, find the value of @ and b given f'(2)=9
and f (4)=40.

8
(e) Evaluate 23" 2
I




QUESTION 3 (20 marks)

(a) Justine is a talented soccer goal keeper. The probability that she can

stop a penalty shot at goal is 70%. During a match the opposition had
3 penalty shots at goal. What is the probability that J ﬁstine stopped:
)] all 3 penalty shots ?

(i1) ‘exactly 1 penalty shot?

(iii)  at most 2 penalty shots ?

(b) By considering the recurring decimal 046 as the sum of an infinite

geometric series, express the recurring decimal as a rational numiber.

2
(c) If y=(x,2—‘1)(1+x) show that x%—2%+2x—2=0.

(d) Forty tickets are sold in a raffle that has 1%, 2°¢ and 3 prizes given.
Ryan purchases 8 tickets.
@) Draw a probability tree using the information above.
What is the probability that Ryan wins: -
(i)  the 1* prize only

(iii)  at least two prizes

(¢) The third term of a geometric sequence is 32 and the sixth term is 4.
i) Find the first term and the common ratio.

(i)  Hence find an expression for the nth term.

(iif) ~ Which term of the sequence is equal to —;—?

Marks
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QUESTION 4 (20 marks)

(2) On the day of her birth, 2™ of J anuary‘d@ Sabrina’s father deposited

$2000 into a savings account which earned interest at 6% per annum,

compounded annually.

@

(i)

How much money would be in the account after the payment of
interest on the 2™ of January 2005 if no additional deposits

were made? ~ )

In fact, beginning on the Z_;i— of January {983 Sabrina’s fathc;r |
deposi.ted $200 into the savings account, and on each successive
birthday . On the 2" of January 2005 , after the payment

of interest and her father’s deposit, Sabrina’s father withdrew all
the money and gave it to her as a present. Calculate the amount of

money Sabrina receives as a present.

(b) The ratio of heads to tails given by a biased coin is 2:3. If this coin is

tossed once:

()
(i)

What is the probability of obtaining a tail?
What is the probability of obtaining at least one head?

N\
[a14

(¢) A rectangle ABCD of side 2x is inscribed between the parabola

y =4-x* and the x-axis as shown below:

y=4-—x2

e

(@)
(i)

0 X X

(IR LY o
N

Show that the area of the rectangle is 4 = 2x(4—x?) units?.

Find the value of x that makes this area a maximum.

(d) The function y =x’ — 3x2. —9x+1 is defined in the domain -4 <x<5.

()

(i)
(iif)
(iv)

Find the coordinates of any turning points & determine their nature.
Find the coordinates of any points of inflexion.

Draw a neat sketch of the curve.

Determine the minimum value of the function in the domain

—4<x<5

\\\.
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QUESTION 5 (20 marks)
(a) The sum of »n terms of the series 5—~10+20—..., is equal to —425.

Find the value of n.

(b) The first term of an arithmetic series is 9 and the last term is 44. If there

are 6 terms in the series find the series.

(¢) p and g are two numbers, where p > ¢ such that p, 6, ¢ form a geometric

series and l , % , l form an arithmetic series. Find the values of p -
p q L
and ¢ which satisfy these conditions.

(d) Farmer McDonald who wishes to keep his animals separate, sets up his
_ - field so that fences exist at C, CD and BE as shown in the diagram

below.
F

\ 4

D

B is the middle of FC and CD is twice the length of BE.

(1) IfFB =x metres and BE =z metres, write down expressions in terms

of x and z for:
(a) the area, 4 , of the field FCD.

() the amount of fencing, £, that the farmer would need.

(i) If the area of the field is 1200 m?, show that the length of fencing
required is given by:

L=2x+ l_80_0 metres.

X

(iii) Hence find the values of x and z so that the farmer uses the minimum

amount of fencing.

END OF EXAM

Marks
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