SYDNEY GIRLS HIGH SCHOOL

2008 Assessment Task 3

MATHEMATICS EXTENSION 1

June 6th, 2008

Reading Time 5 minutes Time allowed: 75 minutes

<u>Topics</u>: Integration by substitution, Inverse functions, Parametric equations of the parabola, Circle geometry, Polynomials.

INSTRUCTIONS:

- · Attempt all FIVE questions.
- · Questions are not of equal value.
- Start each question on a new page. Write on one side of the paper only.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- A table of standard integrals is provided on the back page of the examination.

TOTAL = 85 marks

Question 1

16 MARKS

a. The equation $x^3 + 2x - 8 = 0$ has a root close to x = 1.6. Use one application of Newton's method to find a further approximation to the root. Give your answer correct to 3 decimal places.

3 marks

b. A polynomial is given by $P(x) = x^3 + bx^2 + cx - 12$. Find the values of b and c if (x-2) is a factor of P(x) and 8 is the remainder when P(x) is divided by (x+2).

4 marks

c. Find:

 $\int \frac{dx}{3+4x^2}$

2 marks

ii. $\int x(2+x)^8 dx$ using the substitution x = u - 2.

4 marks

d. Find the primitive of $\cos^2 x$.

3 marks

3 marks

b. If α , β and γ are the roots of the equation

 $5x^3 - 2x^2 + 4x - 1 = 0$, find the value of:

i.
$$\alpha + \beta + \gamma$$

1 mark

1 mark

iii.
$$(2\alpha-1)(2\beta-1)(2\gamma-1)$$

3 marks

iv.
$$\alpha^2 + \beta^2 + \gamma^2$$

2 marks

c.

 $P(2t,t^2)$ is a point on the

parabola $x^2 = 4y$ The

tangent to the parabola at

P and the line y = -tx

intersect at the point M.

i. Show that the

tangent to the parabola has

gradient t.

2 marks

ii. Show that the equation of the tangent at P is given by the equation $tx - y - t^2 = 0$.

1 mark

Find the Cartesian equation of the locus of M as t varies.

3 marks

a. Find the exact value of $\int_{0}^{2} \frac{x}{\sqrt{1+x^2}} dx$, using the substitution $u=1+x^2.$

4 marks

Without differentiating, sketch the polynomial

3 marks

$$P(x) = x^2(3-x)(2x+1)$$
.

For what values of x is P(x) > 0?

b. A polynomial is given by $P(x) = x^2(3-x)(2x+1)$.

2 marks

Write down the equation of the tangent to the curve P(x) at the point where x = 0.

1 mark

c.

Question 3

i. Sketch the graph of the function $y = 3 \sin^{-1} \left(\frac{x}{2} \right)$, clearly

marking all key points.

3 marks

Find the exact equation of the normal to the curve

 $y = 3\sin^{-1}\left(\frac{x}{2}\right)$ at the point where x = 1.

4 marks

Question 4

18 MARKS

a.

i. Write down the expansion for tan(x-y).

1 mark

ii. Hence evaluate $\tan^{-1}(5) - \tan^{-1}\left(\frac{2}{3}\right)$.

3 marks

- In the diagram, AB and CD are intersecting chords of a circle and
 CD is parallel to the tangent to the circle at B.
 - i. Copy the diagram onto your paper and prove that AB bisects ∠CAD, showing any extra construction lines.

3 marks

ii. AB and CD intersect at P. Given that $CD = 13 \, \mathrm{cm}$, $CP = 4 \, \mathrm{cm}$ and $AP = 12 \, \mathrm{cm}$, calculate the length of AB.

2 marks

Question 4 continued on the following page.

Question 4 [continued]

c. Below is the graph of $f(x) = 1 + (x-3)^2$.

i. State the largest positive domain for which f(x) has an inverse function $f^{-1}(x)$.

1 mark

ii. What is the equation of this inverse function $f^{-1}(x)$.

3 marks

iii. Sketch $f^{-1}(x)$, clearly showing the domain and range.

2 marks

iv. Find where the restricted function f(x) and its inverse

function $f^{-1}(x)$ intersect.

3 marks

Question 5

18 MARKS

a. P $(2ap,ap^2)$ and Q $(2aq,aq^2)$ are points on the parabola $x^2=4ay \ .$

i. Show that the equation of the chord PQ is

$$y - \frac{1}{2}(p+q)x + apq = 0.$$

3 marks

ii. The chord PQ passes through (0,8a). Show that pq=-8.

1 mark

iii. Hence, if S is the focus of the parabola, show that

$$SP - SQ = a(p + \frac{8}{p})(p - \frac{8}{p}).$$

4 marks

b. For the parabola $x^2 = 12y$, the chord of contact from an external point $T(x_1, y_1)$ is perpendicular to TQ where Q is $(2x_1, 9y_1)$.

i. Write down the equation of the chord of contact from

$$T(x_1, y_1)$$
 to the parabola $x^2 = 12y$.

1 mark

ii. Hence, find the value of y_i .

3 marks

Question 5 continued on the following page.

Question 5 [continued]

c. Two circles cut at A and B. X is on the circle with centre O.
 XA and XB cut the other circle at C and D respectively.
 XO extended cuts the circle XAB at F and chord CD at G.

i. Neatly copy the diagram onto your answer sheet.

ii. Let $\angle AXF = x$. Prove that ACGF is a cyclic quadrilateral.

5 marks

ii. Prove that XG is perpendicular to CD.

I mark

THE END

Year 12 – Mathematics Extension 1 Assessment Task 3

[Solutions]

Γ	Question 1 = (16)		Question 1 (continued)			
- 1	a.	$f(x) = x^3 + 2x - 8$	d.	$\cos 2x = 2\cos^2 x - 1$		
		$f'(x) = 3x^2 + 2$		$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$		
		$x_1 = 1.6$		$\frac{\cos x = -(\cos 2x + 1)}{2}$		
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$		$\int (\cos^2 x) dx = \int \frac{1}{2} (\cos 2x + 1) dx$		
		$x_2 = 1.6 - \frac{(1.6)^3 + 2(1.6) - 8}{3(1.6)^2 + 2} = \frac{-0.704}{9.68} + 1.4$.	$=\frac{1}{2}\left(\frac{\sin 2x}{2}+x\right)+C$		
2	(3)	$3(1.6)^{2} + 2$ $\therefore x_{2} = 1.673$ $= -0.073 + 1.6$ $P(x) = x^{3} + bx^{2} + cx - 12$	3	$=\frac{\sin 2x}{4} + \frac{x}{2} + C$		
ŀ	b.	$P(x) = x^3 + bx^2 + cx - 12$	Questic	on 2 -(16)		
İ		P(2) = 0 , $P(-2) = 8$	a.	$\frac{d}{dx}(\cos^{-1}(\sin x)) = \frac{-1}{\sqrt{1-\sin^2 x}} \times \cos x$		
		$(2)^3 + b(2)^2 + c(2) - 12 = 0$		$\frac{dx}{dx}(\cos^2(\sin x)) = \frac{1}{\sqrt{1-\sin^2 x}} \cos x$		
		$(-2)^3 + b(-2)^2 + c(-2) - 12 = 8$		$=\frac{-\cos x}{\sqrt{\cos^2 x}}$		
		4b + 2c - 4 = 0		$\sqrt{\cos^2 x}$		
		4b+2c-4=0 4b-2c-28=0		$=\frac{-\cos x}{\cos x}$		
		4c + 24 = 0		$\cos x$ $= -1$		
		4c = -24	(3)	71		
		∴ <i>c</i> = -6				
	$\overline{}$	4b + 2(-6) - 4 = 0		í		
	(4)	4b = 16				
>	0	$\therefore b = 4 , c = -6$				
	c.i.	$\int \frac{dx}{3+4x^2} = \frac{1}{4} \int \frac{dx}{\frac{3}{4} + x^2}$	b.i.	$5x^3 - 2x^2 + 4x - 1 = 0$		
		$3 + 4x^2 + 4 \frac{3}{4} + x^2$		$\alpha + \beta + \gamma = \frac{-b}{\alpha}$		
		$= \frac{1}{4} \times \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x}{\sqrt{3}} \right) + C$		$=\frac{a}{-(-2)}$		
١	(2)	$=\frac{1}{2\sqrt{3}}\tan^{-1}\left(\frac{2x}{\sqrt{3}}\right)+C$	0	$=\frac{2}{5}$		
	c.ii.	$\int x(2+x)^8 dx$	b.ii.	$\alpha\beta\gamma = \frac{-d}{\alpha}$		
		x=u-2 , $u=x+2$		a = a		
				$=\frac{-(-1)}{5}$		
		$\frac{du}{dx} = 1 , dx = du$				
		$\therefore I = \int (u - 2)u^8 du$	($=\frac{1}{5}$		
		$= \int (u^9 - 2u^8) du$	W			
		$= \frac{u^{10}}{10} - \frac{2u^9}{0} + C$				
7	,	10 9				
3	4 9	$= \frac{(x+2)^{10}}{10} - \frac{2(x+2)^9}{9} + C$				

· · · · · · · · · · · · · · · · · · ·		Question 3 = 17				
D.111.	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$	a.	$u=1+x^2$, $\frac{du}{dx}=2x$, $2xdx=du$			
	4		a.v.			
	= \frac{4}{5}		$\int_{0}^{2} \frac{x}{\sqrt{1+x^{2}}} dx = \frac{1}{2} \int_{1}^{3} \frac{du}{\sqrt{u}}$			
	$(2\alpha-1)(2\beta-1)(2\gamma-1)$		0 41 130			
	$= (2\alpha - 1)(4\beta\gamma - 2\beta - 2\gamma + 1)$		$=\frac{1}{2}\int_{1}^{5}u^{-\frac{1}{2}}du$			
	$= 8\alpha\beta\gamma - 4\alpha\beta - 4\alpha\gamma + 2\alpha - 4\beta\gamma$		2 1			
	$+2\beta+2\gamma-1$		1 175			
	$=8(\alpha\beta\gamma)-4(\alpha\beta+\alpha\gamma+\beta\gamma)$		$=\frac{1}{2}\left[2u^{\frac{1}{2}}\right]^3$			
	$+2(\alpha+\beta+\gamma)-1$		r ¬r			
	$=8\left(\frac{1}{5}\right)-4\left(\frac{4}{5}\right)+2\left(\frac{2}{5}\right)-1$		$=\left[\sqrt{u} ight]_{1}^{5}$			
(6)	(4)	4	$=\sqrt{5}-1$			
(3)	$=-1\frac{4}{5}$	\bullet	•			
b.iv.	$(\alpha + \beta + \gamma)^2 = \alpha^2 + \alpha\beta + \alpha\gamma + \alpha\beta + \beta^2$	b.i.	y			
	$+\beta\gamma +\alpha\gamma +\beta\gamma +\gamma^{2}$					
	$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2$					
	$-2(\alpha\beta + \alpha\gamma + \beta\gamma)$					
	$=\left(\frac{2}{5}\right)^2-2\left(\frac{4}{5}\right)$		$\sqrt{-\frac{1}{2}}$ 3 \times			
			/ \			
0	$=-1\frac{11}{25}$	<u>a</u>	$\sqrt{}$			
) 25	3	_ \			
ci.	r ²	b.ii.	-1			
	$y = \frac{x^2}{4}$		$\frac{-1}{2} < x < 0$ and $0 < x < 3$			
	$\frac{dy}{dx} = \frac{2x}{4}$, $\frac{dy}{dx} = \frac{x}{2}$					
	$\frac{1}{dx} = \frac{1}{4}$, $\frac{1}{dx} = \frac{1}{2}$					
10	when $x = 2t$, $\frac{dy}{dx} = \frac{2t}{2}$					
(2)	when $x = 2i$, $dx = 2$.	(2)				
9	$\therefore m_{\text{Tangent}} = t$					
c.ii.	$y - t^2 = t(x - 2t)$	b.iii.	Equation of tangent at $x = 0$ is $y = 0$.			
	$y - t^2 = tx - 2t^2$					
	$\therefore tx - y - t^2 = 0.$	1				
c.iii.	Intersection point of $y = -tx$ and $tx - y - t^2 = 0$	c.i.				
			y ↑			
	$tx - (-tx) - t^2 = 0$		$\int \left(2\frac{3\pi}{2}\right)$			
	$2tx = t^2$					
	$x = \frac{t}{2}$ Note: $t = 2x$					
	-]	× x			
	$y = -t\left(\frac{t}{2}\right)$					
	(-)					
	$y = \frac{-t^2}{2}$ $\therefore M \text{ is } \left(\frac{t}{2}, \frac{-t^2}{2}\right)$					
		1	$\left(-2 - \frac{3\pi}{2}\right)$			
$ \Im$	$y = \frac{-(2x)^2}{2}$ i.e. $y = -2x^2$	3				
	2		· · · · · · · · · · · · · · · · · · ·			

Questio	n 3 (continued)	Questio	n 4 (continued)
		c.ii.	$y=1+(x-3)^2$
	$y = 3\sin\left(\frac{\pi}{2}\right)$		$f^{-1}(x)$ $x=1+(y-3)^2$
	$\frac{dy}{dx} = \frac{3}{\sqrt{4-x^2}}$		$(y-3)^2 = x-1$
	V		$y-3=\pm\sqrt{x-1}$
	when $x = 1$, $m_T = \frac{3}{\sqrt{4-1}}$		$y = 3 \pm \sqrt{x - 1}$
	and $y = 3\sin^{-1}\left(\frac{1}{2}\right)$ i.e. $y = \frac{\pi}{2}$		*
	and $y = 3\sin\left(\frac{1}{2}\right)$ i.e. $y = \frac{1}{2}$		The domain of the fn. is equivalent to
	$\therefore m_N = \frac{-\sqrt{3}}{3}$		the range of the inverse fn.
	,		$\therefore y \ge 3 \qquad \therefore f^{-1}(x) = 3 + \sqrt{x - 1}$
	$y - \frac{\pi}{2} = \frac{-\sqrt{3}}{3}(x-1)$		
(i-3	$\therefore 2\sqrt{3}x + 6y = 3\pi + 2\sqrt{3}$	163	
(4).	is the equation of the normal	(3)	
Questi	m4 (-18)	c.iii.	y
a.i.	$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$		
0	$1 + \tan x \tan y$		
a.ii.	$\tan^{-1}(5) - \tan^{-1}(\frac{2}{3})$		
	$\binom{3}{3}$		(1,3)
	Let $x = \tan^{-1}(5)$ and $y = \tan^{-1}\left(\frac{2}{3}\right)$		
	$1000 \times 1000 \times $		·
	$\therefore \tan x = 5 \text{ and } \tan y = \frac{2}{3}$,
	3	A.	↓
	$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$	1	
		c.iv.	$f(x)$ and $f^{-1}(x)$ intersect on the line $y = x$
	$=\frac{5-\frac{2}{3}}{1+5\times\frac{2}{3}}$		$\therefore \text{Solve } f(x) = x \text{ or } f^{-1}(x) = x.$
	$=\frac{3}{1+5}$		$1 + (x-3)^2 = x$
	$\frac{1+3\times\frac{1}{3}}{3}$		$x^2 - 7x + 10 = 0$
	=1		(x-2)(x-5)=0
6	$\therefore x - y = \frac{\pi}{4}$ i.e. $\tan^{-1}(5) - \tan^{-1}(\frac{2}{3}) = \frac{\pi}{4}$		$\therefore x = 2 \text{ or } x = 5$
3).		1	But the restricted function $f(x)$ is
b.i.	Let $\angle CAB = x$		defined for $x \ge 3$.
	$\angle CAB = \angle CDB = x$ (\angle s in the same segment)		\therefore The only intersection point is $(5,5)$.
	$\angle CDB = \angle DBE = x \text{ (alt. } \angle s, CD \parallel BE)$		
	$\angle DBE = \angle DAB = x \ (\angle \text{ in alt. segment})$	(3	y 4
23	$\therefore \angle CAB = \angle DAB \text{ (both equal } x)$		•
	∴ AB bisects ∠CAD	-	
b.ii.	$\overrightarrow{AP} \times \overrightarrow{BP} = \overrightarrow{CP} \times \overrightarrow{DP}$		
	$12 \times BP = 4 \times 9$		
(2)	$\therefore BP = 3$		
	$\therefore AB = 15 \text{ cm}$		

