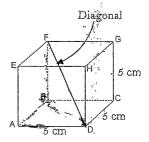
Sydney Girls High School

Mathematics Year 9

Yearly Examination 2007


Time Allowed: 75 Minutes

Instructions:

- There are five questions of equal value (20 marks each)
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working
- Start each question on a new page.
- Write on one side of paper only.
- Diagrams are NOT to scale.
- Board- approved calculators may be used.

QUESTION 1:

1.	Simplify $2\sqrt{32} - 5\sqrt{8}$	2
2.	Expand and simplify $(3\sqrt{2}-2\sqrt{3})^2$	2
3.	Simplify by rationalising the denominator:	
	a. $\frac{\sqrt{3}+1}{5\sqrt{3}}$.	2
	b. $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$	2
4.	Find the length of the diagonal in the cube shown in the	3
	diagram. Express your answer as a surd in its simplest	
	form.	

5. For the following scores:

6 5 7 2 6 4 3 4

find:

a,	the range		l	L
	the mode		3	L
0	the mean]	L

QUESTION 2:

1. Solve the following equations:

a.
$$7-3p=14-p$$

b.
$$3(2p-1)-3(1+3p)=3$$

c.
$$\frac{7a-21}{2} - \frac{a+1}{3} = 5$$

2

3

3

d.
$$\frac{3}{2x} = 1 - \frac{4}{x}$$

- 2. Selma is ten years older than Marge, but twenty five years ago, Selma was twice Marge's age. Find Marge's present age.
- 3. Solve the inequation and graph your solution on a number line: $\frac{4-5x}{2} < 1$
- 4. Make c the subject of the formula $A = 2b \times \sqrt{\frac{c}{d}}$.
- 5. Solve the literal equation for x: $m = \frac{1+bx}{1+x}$

START QUESTION 3 ON A NEW PAGE.

6. The ages of participants in an aerobics class at a gym are shown below in a stem and leaf plot:

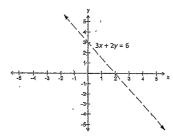
Stem	Leaf						
1	4.	Z	8	8	9		
2	0	1	3	5	6	7	9
3	2	4	5	6	7	8	
4	2	5					
5	3						

1

1

- a. Find the range of ages in the class.
- b. Find the median age.
- 7. For the frequency distribution table below, draw a combined histogram and frequency polygon:

	•
x	f
1	4
2	3
3	5
4	0
5	2
6	6


START QUESTION 2 ON A NEW PAGE

QUESTION 3:

1. For the points A(-1,4) and B(5,-4), find:

a. the distance between A and B;	2
b. the midpoint of the interval joining A and B;	2
c. the gradient of the line passing through A and B;	2
d. the equation of the line AB in general form.	2

- 2. A vertical line passes through the point (-5,6). What is
 its equation?
- 3. Find the equation of the line parallel to x+5y-1=0 and passing through (2,-5). Give your answer in general form.
- 4. Write down the inequation best represented by the graph below.

- 5. The coordinates of the midpoint M, of the interval AB are (7,2). If the coordinates of A are (1,-4). Find the coordinates of B.
- 6. Two lines x+3y+3=0 and y=mx+2 are perpendicular. 3 Find the value of m.

START OUESTION 4 ON A NEW PAGE.

QUESTION 4:

- 1. Homer is a nuclear power plant technician and is paid \$500 for a 40-hour week. In one week, he works 12 hours overtime of which 8 hours is at time-and-a-half and the remainder is at double time. What are his earnings for that week?
- 2. Patti works at the RTA on an annual salary of \$39 104. If she receives $17\frac{1}{2}$ % holiday loading on the four weeks holiday pay period, calculate her holiday pay for the four weeks (use 52 weeks per year).
- 3. Moe's gross income is \$64 530. His tax deductions amount to \$1360. Using the tax table below:

Taxable income	Tax on this income
\$0 - \$6000	Nil
\$6001 - \$25000	15c for each \$1 over \$6000
\$25001 - \$75000	\$2850 + 30c for each \$1 over \$25000
\$75001 - \$150000	\$17850 + 40c for each \$1 over \$75000
\$150001 and over	\$47850 + 45c for each \$1 over
	\$150000

- a. calculate the amount of tax due;
- b. his Medicare levy if it is 1.5% of his taxable income.

3

3

4. Krusty is offering multiple discounts of 15% and 12% on the cost of a wall clock. If the clock was originally priced at \$98, find the final discounted price.

- 5. Lisa bought a saxophone on terms of \$150 deposit and 24 monthly payments of \$30. The cash price of the saxophone was \$700. How much interest did she pay on the money borrowed?
- 6. Bart bought a magic kit for \$90. If the price included 10% 3 GST, how much would the kit cost before GST was added?

START QUESTION 5 ON A NEW PAGE.

QUESTION 5:

- 1. Expand and simplify: (6+m)(2-m)
- 2. Expand and simplify: $(2a+3)^2 (a+1)(a-1)$ 3
- 3. Factorise fully:
 - a. $100a^2 25b^2$
 - b. $4x^2 x 18$
- 4. Simplify:
 - a. $\frac{a^2 + 5a + 6}{a^2 9} \times \frac{a^2 1}{a^2 + 3a + 2}$
 - b. $\frac{x}{x^2 + 7x + 12} \frac{x+2}{x^2 + 2x 3}$
- 5. Solve for x and y:
 - 3x 8y = 2
 - 2x + 5y = 22

END OF TEST ©

YEAR 9 YEARLY EXAMINATION 2007 - SOLUTIONS

Question 1: (20 marks)

$$\frac{1}{1} 2 \sqrt{32} - 5 \sqrt{8} = 2 \times 4 \sqrt{2} - 5 \times 2 \sqrt{2}$$

$$= 8 \sqrt{2} - 10 \sqrt{2}$$

$$= -2 \sqrt{2}$$

2)
$$(3\sqrt{2} - 2\sqrt{3})^2 = 18 - 12\sqrt{6} + 12$$

= 30 - 12\int \(\beta \)

$$30$$
) $\frac{13+1}{513} = \frac{13+1}{513} \times \frac{13}{13}$

$$\frac{15}{15}$$

b)
$$\sqrt{3} - \sqrt{2}$$
 $\Rightarrow \sqrt{3} - \sqrt{2}$ $\Rightarrow \sqrt{3} - \sqrt{2}$

$$= (\sqrt{3} - \sqrt{2})^{2}$$

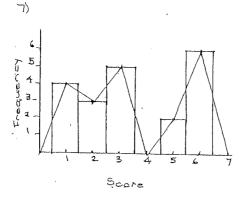
$$= (\sqrt{3} - \sqrt{2})^{2}$$

$$= (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})$$

$$= 3 - 2\sqrt{6} + 2$$

$$3 - 2$$

= 5-256


- · diagonal of cube 1 = 513 cm,

5a) Range = 7-2

≂ 5

c)
$$\bar{a} = \frac{31}{8}$$

Question 2: (80 marks)

1a)
$$7-3p=14-p$$

 $2p=-7$
 $p=-\frac{7}{2}$

b)
$$3(2p-1)-3(1+3p)=3$$

$$6p-3-3-9p=3$$
 $-3p-6=3$
 $3p=-9$
 $p=-3$

c)
$$\frac{7a-21}{2} - \frac{a+1}{3} = 5$$

$$3(7a-2)-2(a+1) = 5$$

$$\frac{3}{2x} = 1 - \frac{4}{x}$$

$$3 = 2x - 8$$

$$2x = 11$$

$$x = \frac{11}{2}$$

$$(x+10)-25 = 2(x-25)$$

 $x -15 = 2x -50$
 $x = 35$

- . Marge's present age = 35

$$\frac{3)}{2} \frac{4-5x}{2} < 1$$

4-5a 42

-5 x 2-2

$$\frac{2}{2} > \frac{2}{5}$$

$$\frac{1}{4} = \frac{2}{6} = 0 \quad \frac{2}{6} = \frac{4}{5}$$

$$\frac{A}{2b} = \int \frac{c}{d}$$

$$\frac{A^2}{4b^2} = \underline{c}$$

$$c = \frac{A^2 d}{4b^2}$$

$$5) m = 1 + bx$$

$$1 + x$$

$$m(1+\infty) = 1+b\infty$$

$$m + mx = 1 + bpc$$

$$bx - mx = m - 1$$

$$x (b - m) = m - 1$$

$$\frac{d}{dx} = \frac{m - 1}{dx}$$

Question 3: (20 marks)

$$|a| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(5 + 1)^2 + (-4 - 4)^2}$$

$$= \sqrt{6^2 + (-8)^2}$$

$$= \sqrt{36 + 64}$$

$$= \sqrt{100}$$

b)
$$M = \left(\frac{\alpha_1 + \alpha_2}{2}, \frac{4 + 4}{2}\right)$$

$$= \left(\frac{-1 + 5}{2}, \frac{4 - 4}{2}\right)$$

$$= \left(\frac{2 \cdot 0}{2}, \frac{4 - 4}{2}\right)$$

c)
$$m = \frac{1}{2} - \frac{1}{2}$$

$$= \frac{-4 - 4}{5 + 1}$$

$$= \frac{-8}{6}$$

d)
$$y-y_1 = m(x-x_1)$$

 $y-4 = -\frac{4}{3}(x+1)$
 $3y-12 = -4x-4$

$$4x + 3y - 8 = 0$$
 (2)

3)
$$x + 5y - 1 = 0$$

 $5y = -x + 1$
 $y = -\frac{1}{5}x + \frac{1}{5}$
 $m_1 = -\frac{1}{2}$

Parallel lines m, = m2

$$y = y, = m(\alpha - x_1)$$

$$y + 5 = -\frac{1}{5}(\alpha - 2)$$

5)
$$M = \left(\frac{\alpha_1 + \alpha_2}{2}, \frac{\gamma_1 + \gamma_2}{2}\right)$$

$$(7,2) = \left(\frac{1+\alpha_2}{2}, -\frac{4+\gamma_2}{2}\right)$$

$$\frac{1+\alpha_{2}}{2} = 7$$

$$1+\alpha_{2} = 14$$

$$1+\alpha_{3} = 13$$

$$-4+4=2$$

$$-4+4=4$$

$$1=8$$

$$1=8$$

$$1=8$$

$$1=8$$

6)
$$x+3y+3=0$$
 $y=mx+2$
 $3y=-x-3$ $m_2=m$
 $y=-\frac{1}{2}x-1$

$$\sqrt{z} - \frac{1}{3}$$

Perpendicular lines: m2 = - 1

```
Question 4: (20 maries)
```

1) Hourly	rate	-3×4	\$500
			40
		"	\$12.5

4) Final cost

Time -and -a-half =
$$$12.50 \times 1.5 \times 8$$

= \$150

= \$752

$$= \frac{x^2 - x - (x^2 + 6x + 8)}{(x + 4)(x + 3)(x - 1)}$$

1)
$$(6+m)(2-m)=12-6m+2m-m^2$$

= $12-4m-m^2$

$$= \frac{-7 \times -8}{(x+4)(x+3)(x-1)}$$

(3)

(4)

5)
$$3x - 8y = 2$$
 ① $2x + 5y = 22$ ②

3 a)
$$100a^2 - 25b^2 = 25(4a^2 - b^2)$$

①
$$\times 2$$
 6 $\times -164 = 4$ ③ ② $\times 3$ 6 $\times +154 = 66$ ④

b) $4x^2 - 3c - 18$

$$= 4x^{2} + 8x - 9x = 18$$

$$= 4x(x+2) - 9(x+2)$$

$$= (x+2)(4x-9)$$

Sub 4=2 140 0

$$4a) \frac{a^{2} + 5a + 6}{a^{2} - 9} \times \frac{a^{2} - 1}{a^{2} + 3a + 2}$$

$$= (a+3)(a+2) \times (a+1)(a-1)$$

 $(a+3)(a-3) \times (a+2)(a+1)$

$$=$$
 $\frac{a-1}{a-3}$

b)
$$\frac{x}{x^2 + 7x + 12}$$
 $\frac{-x + 2}{x^2 + 2x - 3}$

$$= \frac{\infty}{(\alpha+4)(\alpha+3)} - \frac{\alpha+2}{(\alpha+3)(\alpha-1)}$$

$$= \frac{x(x-1) - (x+2)(x+4)}{(x+4)(x+3)(x-1)}$$