Sydney Girls High School

MATHEMATICS EXTENSION 2

2010 HSC Assessment Task 1 November 2009

Time Allowed - 90 minutes (plus 5 minutes reading time)

Topics: Circular Motion (Exercises 1-8), Curve Sketching (Exercises 1-8)

General Instructions:

- There are TEN (10) Questions which are NOT of equal value.
- Questions do not necessarily appear in order of difficulty.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each question on a new page.
- Write on one side of the paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Write your student number clearly at the top of each question and clearly number each question.
- Use $g = 10 \text{ ms}^{-2}$

Total: 90 marks

OUESTION 1 (8 Marks)

MARKS

Sketch the following on separate number planes, showing important features:

a.
$$y = (x+1)^2(x-2)(x-4)^3$$
 2

b. $x = \sqrt{4-y^2}$ 2

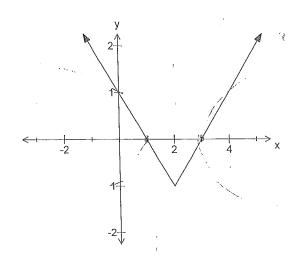
c. $\frac{x^2}{16} + \frac{y^2}{25} = 1$ 2

d. $x^2 - y^2 = 4$ 2

QUESTION 2 (12 Marks)

MARKS

a.' Given $F(x)=1-x^2$, sketch:


i. $y = F(x)$	1
ii. $y = -F(x)$	1
iii. $y = F(x) $	2
iv. $y = \{F(x)\}^2$	2

b. For the following, sketch y = f(x), $y = f^{-1}(x)$ and y = x on the same number plane. Show any key points, including all intersection points.

i.
$$f(x) = x^{\bar{3}}$$

ii. $f(x) = 2^x$

MARKS

Copy the function y = f(x) as shown above and sketch on the same number plane:

a.
$$y = f(|x|)$$

2

b.
$$y = \frac{1}{f(x)}$$

2

$$c. \quad y^2 = f(x)$$

2

$$d. \quad y = f(x-2)$$

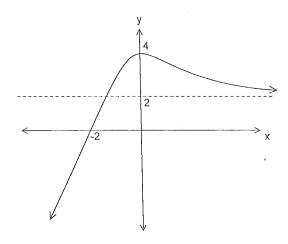
1

OUNSTION 4 (10 Marks)

MARKS

Sketch the following on separate number planes, showing important features:

a.
$$y = \frac{3x+4}{x+2}$$


b.
$$25y^2 - 9x^2 = 225$$

c.
$$y = x - \frac{2}{x+1}$$

d.
$$y = \frac{3}{(x+2)(x-1)^3}$$

QUESTION 5 (8 Marks)

MARKS

Copy the function y = f(x) as shown above and sketch on the same number plane:

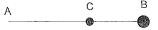
$$a. \quad y = f(-x)$$

$$b_{x} \quad y = 2^{f(x)}$$

c.
$$y = -\sqrt{f(x)}$$

d.
$$y = f^{-1}(x)$$

$$g_{\ell} \quad |y| = f(x)$$

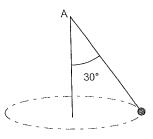

QUESTION 6 (8 Marks)

MARKS

3

A 3 metre piece of string AB has a mass of 5 kg attached at point B. The string is rotated in a horizontal circle about A and breaks as soon as it exceeds a speed of rotation of 45 revolutions per minute.

- a. Find the maximum possible tension in the string.
- b. The mass at B is replaced by a 3 kg mass and an additional 1 kg mass is attached to the string at C, 2 metres from A (as shown below). Find the new maximum number of revolutions per minute that the string can be rotated.

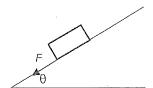

QUESTION 7 (8 Marks)

MARKS

MARKS

A mass is rotating in circular motion as a conical pendulum as shown in the diagram.

The mass of 5 kg is attached to A by a light string of length 2 m and the angle between the string and the vertex is 30°.


- a. Find the tension in the string.
- b. Find the speed that the mass is moving. Give your answer in m/s.

4

-+

QUESTION 8 (10 Marks)

A section of a car-racing track is being constructed and is to be banked at an angle of θ as shown below. A car of mass m kg is travelling around the track at v m/s.

- a. Copy the diagram and mark in the normal force N and the gravitational force.
- b. Resolve the forces vertically and horizontally.

-

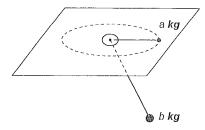
2

3

c. Hence, find an expression for the:

- i. lateral force F in terms of m, v, r, g and θ .
- ii. normal force N in terms of m, v, r, g and θ .
- d. The road is constructed around a curve of radius 150 m to allow for an optimum speed of 120 km/h. Calculate the angle (answer to the nearest minute) at which the track should be banked.

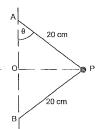
i


QUESTION 9 (7 Marks)

MARKS

7

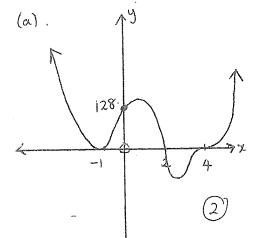
Two masses are connected by a light inelastic string. One mass of a kg is rotating in circular motion on a smooth horizontal table with angular velocity w rad/s. The other mass of b kg is at the other end of the string, rotating in a conical pendulum below the table with angular velocity 2w rad/s.

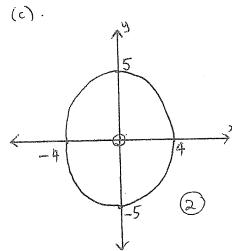

If a:b=5:2, find what fraction of the string lies above the table.

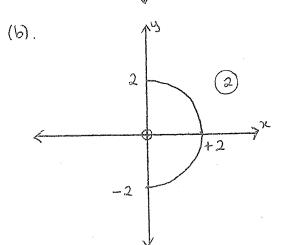
QUESTION 10 (12 Marks)

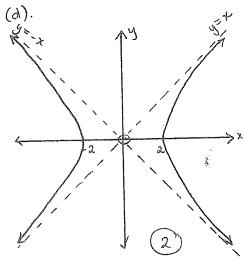
MARKS

A particle, P, of mass m, is attached by two strings, each of length 20 cm, to two fixed points, A and B, which are 24 cm apart and lie on a vertical line as shown in the diagram.

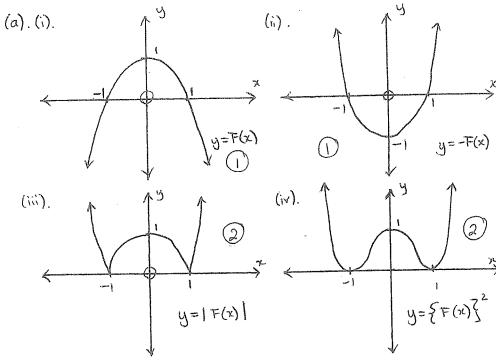


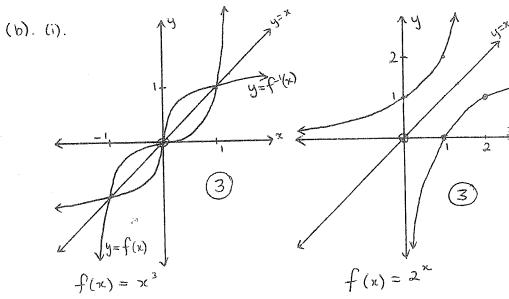

The particle P moves with constant speed, ν m/s, in a horizontal circle about the midpoint of AB so that both pieces of string experience a tension.

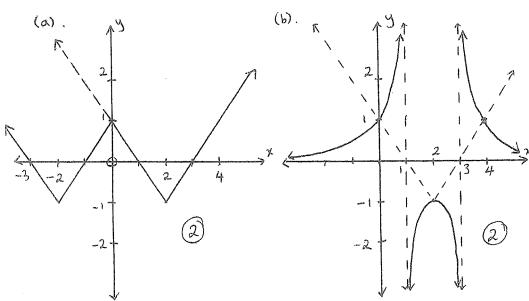

The tension in AP is T_1 and the tension in BP is T_2 . The acceleration due to gravity is $g~{\rm ms}^{-2}$.

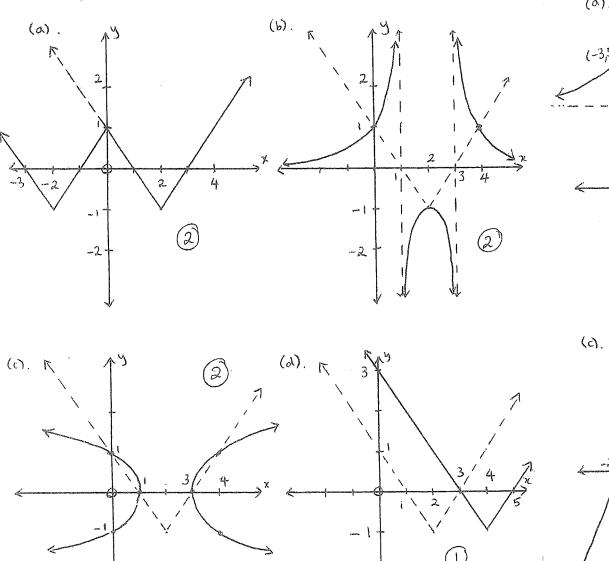

a.	Copy the diagram and mark on it all the forces acting on P.	2
b.	Find the length of the radius of motion OP.	1
c.	Resolve the forces on P horizontally and vertically.	2
đ.	Find the tension in each part of the string in terms of m, v and g .	4
e.	Show that $v > \frac{4\sqrt{3g}}{15}$.	3

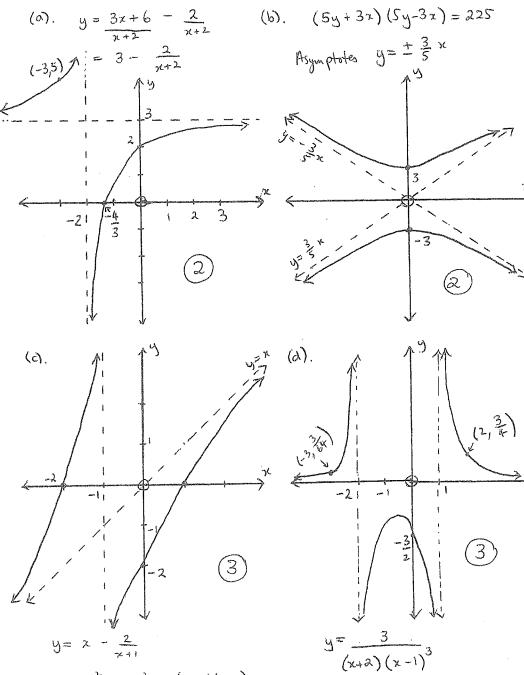
Question 1

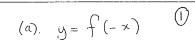


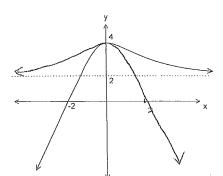


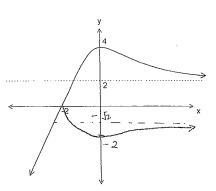


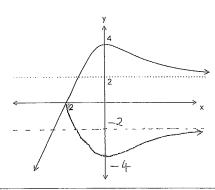



QUESTION 2






QUESTION 5



$$(b), y = \begin{cases} f(x) \\ y \\ 4 \end{cases}$$

(c).
$$y = -\sqrt{f(x)}$$
 2

(e).
$$|y| = f(x)$$

(a).
$$A$$

$$W = 45 \text{ revs/min}$$

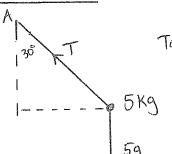
$$= \frac{45 \times 2T}{60} \text{ rad/s}$$

$$= \frac{3T}{2} \text{ rad/s}$$

$$= 5 \times 3 \times \left(\frac{3T}{2}\right)^2$$

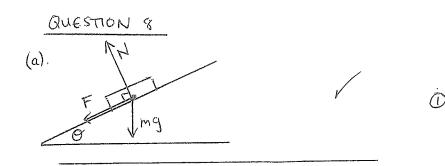
$$= \frac{135T^2}{4} \text{ N}$$

$$T_1 = mrw^2 \qquad T_2 = 2 \times 1 \times w^2 + T_1$$
$$= 9w^2 \qquad = 11w^2$$


$$11 w^{2} = \frac{135 \pi^{2}}{4}$$

$$= \sqrt{\frac{135 \pi^{2}}{44}} \quad rad/s$$

$$= \sqrt{\frac{135 \pi^{2}}{44}} \times \frac{60}{2\pi} \quad \text{vev/min}.$$


$$w = 52.5 \quad \text{rev/min}.$$

(a). Vert.
$$T_{cos} 30 = 5g$$

 $T = \frac{5g}{cos} = \frac{100}{\sqrt{3}}$
 $T \doteq 57.7 \text{ N}$

(b).
$$T\sin 30 = \frac{mv^2}{r}$$
 $\sin 30 = \frac{r}{2}$
 $v = \frac{rT\sin 30}{m}$
 $= \frac{100}{\sqrt{3}} \times \frac{1}{2} \times \frac{1}{5}$
 $= \frac{10}{\sqrt{3}}$ $\therefore v = \sqrt{\frac{10}{\sqrt{3}}} = 2.40 \text{ m/s}$

(2)

(c). NsinOcosO+ Fcos²O =
$$\frac{mv^2}{r}$$
 (csO (1)
NsinOcosO - Fsin²O = $\frac{mv^2}{r}$ (csO (2)
(i) -(2) $F = \frac{mv^2}{r}$ cosO - $\frac{mgsinO}{r}$

$$N \sin^2 \theta + F \sin \theta \cos \theta = \frac{mv^2 \sin \theta}{v}$$

$$N \cos^2 \theta - F \sin \theta \cos \theta = \frac{mq \cos \theta}{v}$$

$$(3) + (4)$$

$$N = \frac{mv^2 \sin \theta + mq \cos \theta}{v}$$

(d).
$$r = 150 \text{ m}$$
 $F = 0$ $v = 120 \text{ km/h}$ $\theta = ?$

$$= 33\frac{1}{3} \text{ m/s}$$

$$F = \frac{mv^{2} \cos \theta - mg \sin \theta}{r}$$

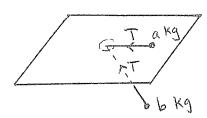
$$O = m\left(\frac{(33\frac{1}{3})^{2}}{150}\cos \theta - 10 \sin \theta\right)$$

$$\therefore \tan \theta - \frac{(33\frac{1}{3})^{2}}{150 \times 10} \Rightarrow \theta = 36^{\circ}32^{\circ}$$

$$\therefore \tan \theta - \frac{(33\frac{1}{3})^{2}}{150 \times 10} \Rightarrow \theta = 36^{\circ}32^{\circ}$$

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

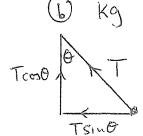

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

$$\Rightarrow \tan \theta = \frac{150 \times 10}{150 \times 10}$$

QUESTION 9


$$a kg \rightarrow w rad/s$$
 $b kg \rightarrow \lambda w rad/s$

$$\therefore 2a = 5b$$

or
$$b = \frac{2a}{5}$$

$$T = Mrw^2$$

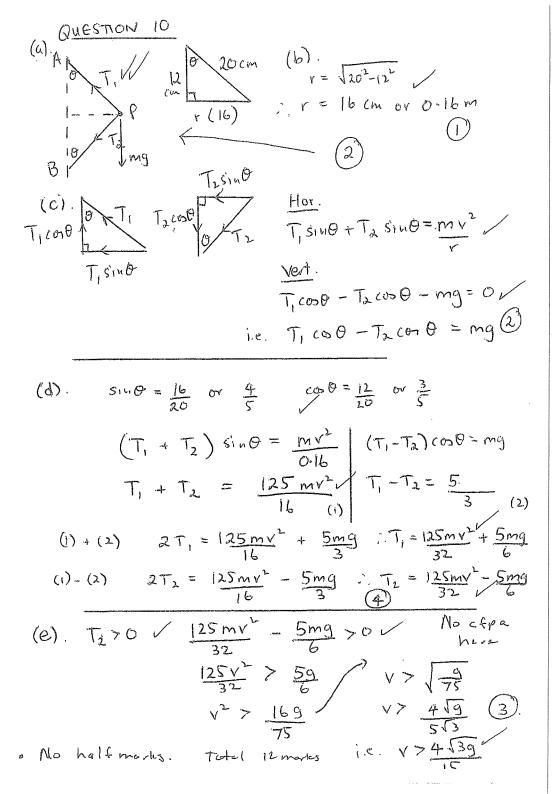
$$= arw^2 /$$

$$T\sin\theta = mvw^{2}$$

$$Tx RV = \frac{2a}{5} \times R \times (2w)^{2} \qquad \theta \qquad \ell$$

$$\frac{avw^{2}}{\ell} = \frac{8aw^{2}}{5}$$

$$\therefore r = \frac{8}{5}$$


.. 8 of string lies above the table /

Notes no half m

e Methods of soln varied

lgs - put a=5, b=2

- Using Thelow = mlw2

