

Sydney Girls High School

Year 11 MATHEMATICS EXTENSION 1

2012 YEARLY EXAMINATION

Time Allowed: 80 minutes + 5 minutes Reading Time

TOPICS: Harder 2U, Differential Calculus, Sequences and Series, Probability, The Quadratic Polynomial and Induction.

Directions to Candidates

- There are four (4) questions.
- Attempt ALL questions.
- · Questions are of equal value.
- · Start each question on a new page.
- · Write on one side of the paper only.
- Show all necessary working. Marks will be deducted for careless or badly arranged work.
- · Diagrams are NOT drawn to scale.
- Board-approved calculators may be used.

Name:	T	Teacher:	
		_	

Question 1 18 Marks a) The quadratic equation $3x^2 - 2x - 5 = 0$ has roots α and β . Evaluate: i. $\alpha + \beta$ 1 ii. $\alpha\beta$ 1 iii. $\alpha\beta^2 + \beta\alpha^2$ iv. $(\alpha - \beta)^2$ b) Find the coordinates of the point P(x, y) that divides the interval AB joining points 2 A(-5,11) and B(7,3), externally in the ratio 3:1. c) Given $4x^2 - 5x + 6 \equiv a(x-2)^2 + b(x+3) + c$ find the values of a, b and c. 3 d) Solve $\frac{4}{5-x} \ge 1$. 3 e) Differentiate the following: 2

Year 11 Mathematics Extension 1

ii. $(5-x^3)\sqrt{5-x^3}$

Yearly Examination 2012

Question 3 (Begin on a New Page)

18 Marks

Question	2	(Begin	on	a	New	Page)
----------	---	--------	----	---	-----	-------

18 Marks

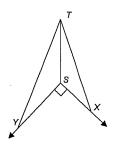
3

3

1

Yearly Examination 2012

- a) Solve the equation $7(7)^{2x} 8(7)^x + 1 = 0$.
- b) A flagpole, ST, is h metres high and on level ground. From a point, X, due south of the pole, the angle of elevation to T, the top of the pole, is 45°. From a point, Y, due west of the pole, the angle of elevation of the top of the pole is 30°.



- 1 i. Copy the given diagram, showing all of the above information.
- ii. Find the exact value of the height of the pole, if the distance between X and Y is 10 metres.
- c) In a certain course all students sit for a theory examination in which 70% of the candidates pass. Those who pass the theory examination then sit a practical test, which is passed by 40% of the candidates.

A student is chosen at random. Find the probability that:

- i. the student passes both examinations
- ii. the student passes just one of the examinations.
- d) For the function $f(x) = \frac{-2}{x^2 + 1}$:
 - i) Evaluate f(0).
 - Show that f(x) is an even function.
 - What happens to the values of f(x) as x gets very large?
 - Find the domain and range of f(x).
 - Draw a sketch of the function.

a) Consider the geometric sequence $\sin^2 x$, $\sin^4 x$, $\sin^6 x$... where $0 < x < 90^\circ$. 3 Find the limiting sum of the sequence, expressing the answer in simplest form. b) Consider the circle $x^2 + y^2 - 2x - 14y + 25 = 0$. i. Find the centre and radius of the circle. 2 ii. Show that, if the line y = mx intersects the circle in two distinct points, 3 then $(1+7m)^2-25(1+m^2)>0$. iii. For what values of m is the line y = mx a tangent to the circle? 2 c) Christina borrows \$480,000 from a finance company to buy a house. She pays interest at 6% per annum, calculated quarterly on the balance still owing. The loan is to be repaid at the end of 20 years with equal quarterly repayments of \$P. Let A_n = the amount owing after the *n*th repayment. i. Show that after the first quarterly repayment of \$P Christina owes an amount 1 equivalent to $A_1 = $487,200 - P . 2 ii. Find an expression for the amount still owing after 3 repayments of \$P. 2 iii. Find the value of P to the nearest cent. d) Use the Principle of Mathematical Induction to prove that, for all positive integers, 3 $n \ge 1$, $1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + n \times 2^{n-1} = 1 + (n-1)2^{n}$

Question 4 (Begin on a New Page)

- a) Show that $-3x^2 + 6x 7 < 0$ for all x.
- b) For the function, y = f(x), you are given the following information:

$$f'(2) = 0$$
; $f(2) = -5$; $f(x) = f(-x)$; $f(0) = 10$.

Draw a neat sketch of a possible curve, clearly showing all of the information given.

c)

- i. Factorise $3x^3 + 3x^2 x 1$.
- ii. Hence solve $3 \tan^3 \theta + 3 \tan^2 \theta \tan \theta 1 = 0$ for $0 \le \theta \le 360^\circ$.
- d) Find $\lim_{h \to 0} \frac{\frac{1}{x+h} \frac{1}{x}}{h}$

Question 4 continues on the next page

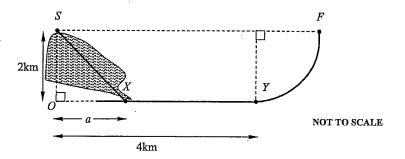
Question 4 (Continued)

Marks

e) Helen is training to compete in a mini triathlon.

The course she practises on consists of three legs, which starts at S and finishes at F. The first leg is a straight swim from S to a point X. The second leg is a bike ride from X to Y along a straight road OY and the final leg is a jog from Y to F around a circular path. The perpendicular distance from S to O is O is

Helen can swim at 6km/h, bike ride at 12km/h and jog at 8km/h.



- i. If the distance OX = a km, show that the time T that it takes Helen to complete the three legs is given by $T = \frac{4\sqrt{a^2+4}-2a+(8+3\pi)}{24}$ hours.
- ii. Find the value of a, that will allow Helen to minimise the time taken to complete the three legs of her practise course.

-- End Of Test --

Yearly Examination 2012

18 Marks

YRII Extension One, 2012 YEARLY, SOLUTIONS

$$|a|_{i} - \frac{-2}{3} = \frac{2}{3}$$

$$=-\frac{2}{2}\times\frac{3}{5}$$

$$\forall x (b+x)$$

$$\lim_{n \to \infty} (a+p)^2 - 4ap$$

$$= \left(\frac{2}{3}\right)^2 - 4x - \frac{5}{3}$$

$$= \frac{64}{a}$$

$$\frac{1 \times 3 - 3 \times 7}{-3 + 1}, \frac{11 \times 1 - 3 \times 3}{-3 + 1}$$

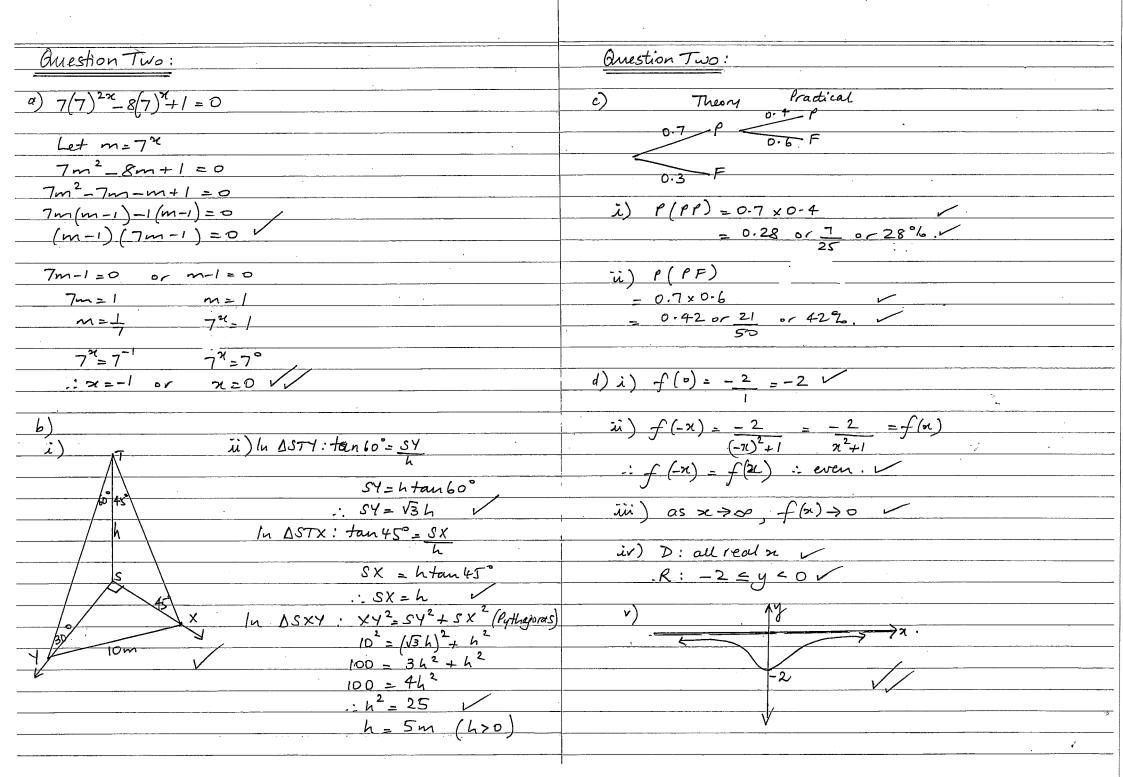
$$= \left(\frac{-2c}{-2}, \frac{2}{-2}\right)$$

$$= \left(13 - 1\right)$$

$$\ddot{v} \cdot y = \left(J - \chi^3\right)^{\frac{2}{L}}$$

$$\frac{dy}{dx} = \frac{3}{2} \left((y - \chi^{1})^{\frac{1}{4}} \times - 3\chi^{2} \right)$$

$$=-\frac{1}{4}x_1 \sqrt{1-x_3}$$



Question 3

a)
$$a = \sin^2 x$$

$$r = \frac{\sin^4 x}{\sin^2 x}$$

$$= \sin^2 x$$

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{\sin^2 x}{1-\sin^2 x}$$

$$= \frac{\sin^2 x}{\cos^2 x}$$

$$= \tan^2 x$$

b)
$$x^2 - 2x + y^2 - 14y = -25$$
$$x^2 - 2x + 1 + y^2 - 14y + 49 = -25 + 1 + 49$$
$$(x-1)^2 + (y-7)^2 = 25$$

Centre (1, 7) and radius = 5 units.

ii.
$$x^2 + y^2 - 2x - 14y + 25 = 0 - ---(1)$$
$$y = mx - ---(2)$$

Sub (2) into (1):

$$x^{2} + (mx)^{2} - 2x - 14(mx) + 25 = 0$$

$$x^{2} + m^{2}x^{2} - 2x - 14mx + 25 = 0$$

$$(1+m^{2})x^{2} - 2(1+7m)x + 25 = 0$$

$$\Delta = b^{2} - 4ac$$

$$= \left[-2(1+7m)\right]^{2} - 4(1+m^{2}) \cdot 25$$

$$= 4(1+7m)^{2} - 100(1+m^{2})$$

Two points of intersection (2 real roots) $\Delta>0$

$$4(1+7m)^{2}-100(1+m^{2})>0$$
$$(1+7m)^{2}-25(1+m^{2})>0$$

iii. For line to be a tangent, $\Delta = 0$:

$$(1+7m)^{2}-25(1+m^{2}) = 0$$

$$1+14m+49m^{2}-25-25m^{2} = 0$$

$$24m^{2}+14m-24 = 0$$

$$12m^{2}+7m-12 = 0$$

$$(4m-3)(3m+4) = 0$$

$$m = \frac{3}{4} \text{ or } m = -\frac{4}{3}$$

c) i.
$$r=0.06+4$$
 $=0.015$ $=487200-P$ ii. $A_1=480000\times 1.015-P$ $=(480000\times 1.015-P)$ $=(480000\times 1.015-P)$ $=(480000\times 1.015^2-1.015P-P)$ $=(480000\times 1.015^2-1.015P-P)$ $=480000\times 1.015^2-P(1+1.015)$ $A_3=A_2\times 1.015-P$ $=(480000\times 1.015^2-1.015P-P)$ $=1.015P-P$ $=(480000\times 1.015^3-1.015^2P-1.015P-P)$ $=480000\times 1.015^3-1.015^2P-1.015P-P$ $=480000\times 1.015^3-1.015^2P-1.015P-P$ $=480000\times 1.015^3-P(1+1.015+1.015^2)$ iii. $A_n=480000\times 1.015^{80}-P(1+1.015+1.015^2+...+1.015^{80})$ $=480000\times 1.015^{80}-P(1+1.015+1.015^2+...+1.015^{80})$ but $A_{80}=0$ (loan repaid) $=480000\times 1.015^{80}-P(1+1.015+1.015^2+...+1.015^{80})$ $=P\times\frac{1(1.015^{80}-1)}{1.015-1}$ $=P\times\frac{1(1.015^{80}-1)}{1.015-1}$ $=P\times\frac{1(1.015^{80}-1)}{1.015^{80}}$ $=P\times\frac{1(1.015^{80}-1)}{1.015^{80}}$

 $=1+k\cdot 2^{k+1}$ =RHSProven true for n=k+1.
Proven true by mathematical induction

 $=1+2k\cdot 2^k$

 $=1+k\cdot 2^{k}-2^{k}+k\cdot 2^{k}+2^{k}$

Question 4.		d. lim
		h-> <i>8</i> 9
$(3) - 3\chi^2 + 6\chi - 7 < 0$		
a = - 3	£	
< 0	;	
$\Delta = 6^2 - 4(-3)(-7)$: •	
= 36 - 84	;	
= -48		
< 0	!	
Since a < 0 and D < 0, -3x2+6x-7 < 0 for all x.		e. Sx2 :
		Sχ =
(b)	:	
		i) T =
7		=
	,	
i i		
5		ii) dT .
		da
	ļ	for
c) i) $3x^3 + 3x^2 - x - 1 = 3x^2(x+1) - 1(x+1)$		0 =
$= (3x^2 - 1)(x + 1)$		2
ii) $(3 \tan^2 \theta - 1) (\tan \theta + 1) = 0$		2 (4
$3\tan^2\theta = 1$ $\tan\theta = -1$		4 (1
$tan\theta = \frac{1}{43}$ $\theta = 135$, 315 °		
$\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$] .	

$\frac{d \cdot \lim_{h \to \emptyset} \frac{1}{x + h} - \frac{1}{x}}{h} = \lim_{h \to 0} \left\{ x + \frac{1}{x} + \frac{1}{x} \right\}$	1 1 2 · h			
	J			
= lim x - (x+h) 1 h=>0 x (x+h) x h				
= \lim _h h=0 hx (x+h)				
= \lim \frac{-1}{\chi \pi \chi \chi \chi \chi \chi \chi \chi \ch				
	' /			
= -1/x2	_			
e. Sx ² = 4 + a ²	FY = 2× 11× 2 × 1/4			
$SX = \sqrt{4 + a^2}$	= π			
i) $T = \sqrt{4 + a^2} + 4 - a + \frac{\pi}{8}$				
$= 4\sqrt{4 + a^2} + 2(4-a) + 3\pi$	·			
24	<u> </u>			
ii) $dT = 2(4+a^2) \cdot 2a - 2 \cdot 24$ for a min. time $dT = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$0 = 4a(4 + a^2)^{-1/2} - 2$: a min time occurs when			
$2 = 4 \alpha (4 + a^{2})^{-1/2} \qquad \alpha = \frac{2}{\sqrt{3}}$ $2 (4 + a^{2})^{1/2} = 4\alpha$				
4 (4 + a²) = 1ba²				
16 = 12a ²				
$a = \frac{2}{\sqrt{3}} (a > 0)$				