Sydney Girls High School

MATHEMATICS EXTENSION 2

HSC Assessment Task 1 November 2012

Time Allowed - 60 minutes + 5 minutes reading time

Topics: Circular Motion, Curve Sketching

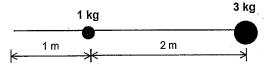
General Instructions:

- There are FOUR (4) Questions which are NOT of equal value.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each question on a new page.
- Write on one side of the paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Write your student number clearly at the top of each question and clearly number each question.
- Use $g = 10 \text{ ms}^{-2}$

Total: 50 marks

QUESTION 1 (13 Marks)

MARKS


(a) If $f(x) = 4x - x^3$, sketch:

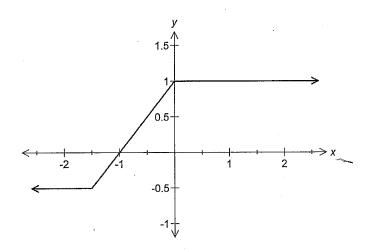
$$(1) y = f(x)$$

(ii)
$$y = \left[f(x) \right]^2$$

(iii)
$$y^2 = f(x)$$

- (b) A mass of 4 kg is revolving at the end of a string 3 m long on a smooth horizontal table. The string will break when the speed of rotation reaches 12 rad/s.
 - Find the breaking strain of the string.
 - (ii) Find the new maximum speed in rad/s if the 4 kg mass at the end of the string is replaced by a 3 kg mass and an additional 1 kg mass is added to the string, 2 metres from the 3 kg mass as shown in the diagram below.

MARKS


QUESTION 3 (12 Marks)

MARKS

(a) Sketch $9x^2 + y^2 = 16$ showing important features.

2

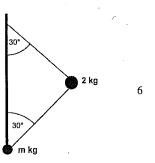
(b) The diagram below is a sketch of the function y = f(x).

On separate diagrams, sketch:

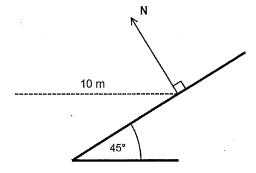
(i)
$$y = f(-x)$$

g:v 1

(iii)
$$y = 2^{f(x)}$$


(iv)
$$|y| = f(x+1)$$
 3

$$(v) y = x \times f(x) 2$$

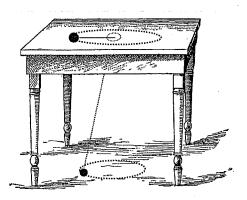

Page 3 of 5

(a) A 2 metre string has a 2 kg mass placed at the centre and another unknown mass at the bottom as shown in the diagram.

If the 2 kg mass is to rotate at 4 radians per second and the angle between the strings and the vertical is 30°, find the magnitude of the unknown mass at the bottom of the system. (Give your answer correct to 2 decimal places).

(b) On a racetrack, a circular bend of radius 10 metres is banked at 45° to the horizontal. Given that the magnitude of the frictional force $F \ \, \text{(up or down the bank)} \ \, \text{is at most } \frac{1}{9} \text{ of the normal reaction } N \text{, find}$ the maximum velocity (in exact form) at which a vehicle of mass $m \ \, \text{kilograms can safely negotiate the bend.}$

QUESTION 4 (13 Marks)


MARKS

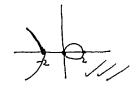
(a) Sketch (without using calculus) the following on separate number planes, showing important features including any intercepts and asymptotes:

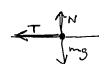
(i)
$$y = \frac{2x}{(x+1)^2(3x-2)}$$


(ii)
$$y = \frac{x^2 - x}{x + 1}$$

(b) Two particles are connected by a light inextensible string which passes through a small hole with smooth edges in a smooth horizontal table. One particle of mass m travels on the table with constant angular velocity ω . Another particle of mass q travels in a circle with constant angular velocity R on a smooth horizontal floor, distance x below the table. The lengths of the string on the table and below the table are K and L respectively and the length L makes an angle θ with the vertical.

- i. (a) If the floor exerts a force N on the lower particle, show that $N = q(g xR^2)$.
- ii. (b) Find the maximum possible value of R for the motion to continue as described.
- iii (c) What happens if R exceeds this value?
- iv. (d) By considering the tension force in the string, show that $\frac{L}{K} = \frac{m}{q} \left(\frac{\omega}{R}\right)^2$.


$$|(a) f(x) = x (4-x^2)$$
= $x(2-x)(2+x)$



(34)

Solutions MATHEMATICS EXTENSION TO BE TO

MATHEMATICS EXTENSION 2
HSC Assessment Task 1
November 2012

$$T = Mrw^{2}$$

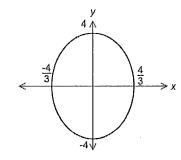
$$= 4x3x12^{2}$$

$$= 1728 N$$

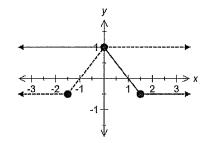
$$T_{1} N$$

$$T_{2} N$$

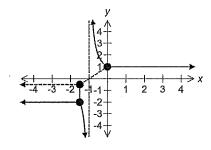
$$T_{3} N$$

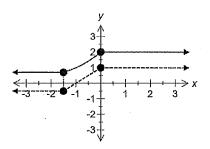

$$T_{4} N$$

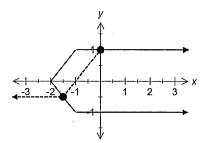
= 10 w2

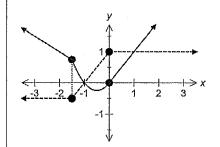

= 9~1+1~2

Question 2 (12 Marks)

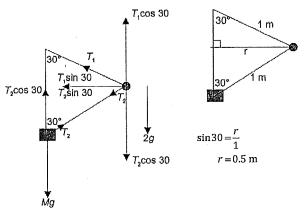

a)
$$9x^2 + y^2 = 16$$


b) i)
$$y = f(-x)$$


ii)
$$y = \frac{1}{f(x)}$$


iii)
$$y = 2^{f(x)}$$

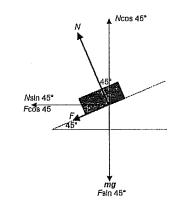
$$|y| = f(x+1)$$



v)
$$y = x \times f(x)$$

Question 3:

a) Forces Diagram:



At M:
$$T_2 \cos 30 = M \times 10$$

$$\frac{\sqrt{3}T_2}{2} = 10M$$

$$T_2 = \frac{20M}{\sqrt{3}}$$

At 2 kg mass:
$$T_1 \cos 30 = 10M + 2 \times 10$$

$$\frac{\sqrt{3}T_1}{2} = 10M + 20$$

$$\sqrt{3}T_1 = 20M + 40$$

$$T_1 = \frac{20M + 40}{\sqrt{3}}$$

$$T_1 \sin 30 + T_2 \sin 30 = 2 \times 0.5 \times 4^2$$

$$\frac{T_1}{2} + \frac{T_2}{2} = 16$$

$$T_1 + T_2 = 32$$

$$\frac{20M + 40}{\sqrt{3}} + \frac{20M}{\sqrt{3}} = 32$$

$$20M + 40 + 20M = 32\sqrt{3}$$

$$40M + 40 = 32\sqrt{3}$$

$$40M = 32\sqrt{3} - 40$$

$$M = \frac{32\sqrt{3} - 40}{40}$$

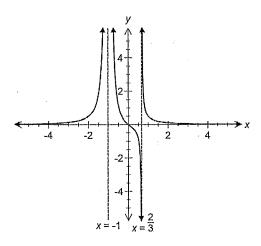
$$M = \frac{4\sqrt{3} - 5}{5} \text{ kg}$$

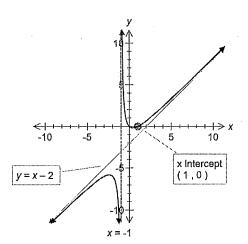
Dimensions Diagram:

$$N\cos 45 = mg + F\sin 45$$
$$N\sin 45 + F\cos 45 = \frac{mv^2}{10}$$

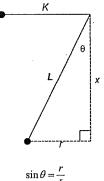
When
$$F = \frac{1}{9}N$$
:

Equating (1) and (2):


$$\frac{45\sqrt{2} \text{ m}}{4} = \frac{9\sqrt{2} \text{ m/v}^2}{100}$$


$$v^2 = \frac{45}{4} \times \frac{100}{9}$$

$$= 125$$


$$v = 5\sqrt{5} \text{ ms}^{-1}$$

Ouestion 4

b.

$$\sin\theta = \frac{r}{L}$$

$$\cos\theta = \frac{x}{L}$$

i. Mass below table

Vertically:
$$N + T\cos\theta = qg$$

$$N + \frac{Tx}{L} = qg \to (1)$$

Horizontally:

 $T\sin\theta = qrR^2$

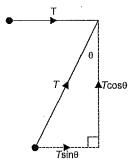
$$\frac{Tr}{L} = qrR^2$$

$$T = qLR^2 \to (2)$$

Substituting (2) into (1)

$$N + \frac{qLR^2x}{L} = qg$$

$$N + qR^2x = qg$$


$$N = q\left(g - xR^2\right)$$

$$q(g-xR^{2}) > 0$$
$$g-xR^{2} > 0$$
$$xR^{2} < g$$

$$xR^2 < g$$

$$R^2 < \frac{g}{x}$$

$$R < \sqrt{\frac{G}{V}}$$

- The bottom particle will lift off the floor.
- Mass on Table:

$$T = mK\omega^2 \rightarrow (3)$$

Equating (1) and (3)

$$mK\omega^2 = qLR^2$$

$$\frac{L}{K} = \frac{m}{q} \left(\frac{\omega}{R}\right)^2$$