

Sydney Girls High School 2012

Trial Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11 14

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 2012 HSC Examination Paper in this subject.

Total marks - 70

SECTION 1 – Pages 2 - 5

10 marks

- Attempt questions 1 10
- Allow about 15 minutes for this section

SECTION II - Pages 6 - 9

60 marks

- Attempt questions 11 14
- Allow about 1 hours 45 minutes for this section

Name:

Teacher:

Section I - Total Marks 10

Attempt Questions 1 – 10

Allow about 15 minutes for this section.

(1) Find
$$\lim_{x\to 0} \frac{\sin 3x}{4x}$$

- (a) $\frac{4}{3}$
- (b) 1
- (c) $\frac{3}{4}$
- (d) 0

(2)
$$\frac{d}{dx} [\sin(\log x)] =$$

- (a) $\cos(\log x)$
- (b) $\frac{\cos(\log x)}{x}$
- (c) $\frac{\sin(\log x)}{x}$
- (d) $-\cos(\log x)$
- We can express $\sin x$ and $\cos x$ in terms of $\tan \frac{x}{2}$, for all values of x except
 - (a) $x = 2\pi, 6\pi, 8\pi, ...$
 - (b) $x = \pi, 3\pi, 5\pi, ...$
 - (c) $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$
 - (d) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \dots$

- (4) Which of the following is an expression for $\int \cos^2 8x dx$
 - (a) $\frac{x^2}{2} + \frac{\sin 8x}{32} + c$
 - (b) $\frac{x}{2} + \frac{\sin 8x}{32} + c$
 - (c) $\frac{x}{2} + \frac{\sin 16x}{32} + c$
 - (d) $\frac{x}{2} + \frac{\sin 16x}{32} + c$
- (5) Which of the following is the correct expression for $\int \frac{dx}{\sqrt{36-4x^2}}$
 - (a) $\frac{1}{2}\sin^{-1}\frac{x}{6}$
 - (b) $\frac{1}{2}\sin^{-1}\frac{x}{3}$
 - (c) $\frac{1}{4}\sin^{-1}\frac{x}{6}$
 - (d) $\frac{1}{6}\sin^{-1}\frac{x}{3}$
- (6) The velocity, ν metres per second, of a particle moving in simple harmonic motion along the x-axis is given by the equation $\nu^2 = 64 16x^2$ What is the period, in seconds of the motion of the particle?
 - (a) $\frac{\pi}{8}$
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{2}$
 - (d) π

(7) Part of the graph of y = P(x), where P(x) is a polynomial of degree three, is shown below.

Which of the following could be the polynomial P(x)?

- (a) $(x-4)^3$
- (b) $(x-5)(x+4)^2$
- (c) $(x-1)(x-4)^2$
- (d) (x-1)(x+2)(x-4)
- (8) The radius of a sphere is increasing at a rate of 5 centimetres per minute.

What is the rate of increase of the surface area of the sphere, in cubic centimetres per minute, when the radius is 4 centimetres?

- (a) 32π
- (b) 64π
- (c) 100π
- (d) 160π
- (9) Which of the following represents the inverse function of $f(x) = \frac{5}{2x-6} 2$

(a)
$$f^{-1}(x) = \frac{5}{2x+4} + 3$$

(b)
$$f^{-1}(x) = \frac{5}{2x+4} - 3$$

(c)
$$f^{-1}(x) = 3 - \frac{5}{2x+4}$$

(d)
$$f^{-1}(x) = \frac{5}{x+2} + 6$$

- (10) How many solutions does the equation $\sin 2\theta = \cos \theta$ have in the domain $0 \le \theta \le 2\pi$?
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1

END OF SECTION I

Section II - Total Marks 60

Attempt Questions 11 – 14 Allow about 1 hour 45 minutes for this section

Answer all questions, starting each question on a new sheet of paper

Question 11 (15 marks)	Mark
(a) Find the acute angle between the lines (to the nearest degree) $3x+2y-6=0$ and $2x-y+8=0$	2
(b) A curve has parametric equations $x = \frac{t}{3}$, $y = 2t^2$.	2
Find the Cartesian equation of this curve.	
(c) Find $\int 2x\sqrt{x-5} \ dx$ using the substitution $u = x-5$	3
(d) If α , β and γ are the roots of the polynomial $5x^3 - 2x - 4 = 0$, find	2
the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.	
(e), Find the exact value of $tan^{-1}(-\sqrt{3})$.	1
(f) Find the coordinates of the point P that divides the interval AB externally	2
in the ratio 3:2, where the coordinates of A and B are respectively (-2, 4)	. ~
and $(3, -6)$.	
Y	
(g) Solve $\frac{x}{2} \ge 2$.	3

Question 12	(15 ma	arks) - Start a new page	Marks
(a) Prove	by ind	action, that $5^n > 20n-1$ for $n \ge 3$, where <i>n</i> is an integer.	3
(b) The p	robabil	ity that it rains on any particular day in London is $\frac{2}{3}$.	·
	(i)	What is the probability that it does not rain for a whole week in London?	2
	(ii)	What is the probability that it will rain on only two days during a whole week in London and that these two days are consecutive?	2
	<u>π</u>		

2

2

2

(c) Evaluate $\int \cos x \sin^2 x \ dx$

<ACE giving full reasons.

(e) Sketch the graph of
$$y = sin^{-1}(x-2)$$

(f) The function
$$f(x) = \sin x - \frac{x}{2}$$
 has a zero near $x = 2$ 2

Taking $x = 2$ as a first approximation, use one application of Newton's method to find a second approximation to the zero. Give your answer correct to two decimal places.

Question 13 (15 marks) Start a new page	Marks
Find the exact value of $\int_0^2 \frac{dx}{4x^2 + 20}$	2

(b) An iron is cooling in a room of constant temperature 20° C. At time t minutes its temperature T decreases according to the equation $\frac{dT}{dt} = -k(T-20)$ where k is a positive constant.

The <u>initial</u> temperature of the iron is 100^{0} C and it cools to 70^{0} C after 15 minutes.

Verify that
$$T = 20 + Ae^{-kt}$$
 is a solution of this equation, where A is a constant.

2

3

(ii) Find the values of
$$A$$
 and k

(c) Calculate the exact volume generated by the solid formed when
$$y = cos^{-1}x$$
 is rotated about the y-axis between $y = 0$ and $y = \pi$.

(d)
$$P(x) = x^4 + 5x^3 + 4x^2 - 8x - 8$$

i. Show that
$$(x + 1)(x + 2)$$
 is a factor of $P(x)$

ii. Find
$$Q(x)$$
 if $P(x) = (x + 1)(x+2)Q(x)$

(a) Solve the equation
$$\tan \theta = \sin 2\theta, 0 \le \theta \le 2\pi$$

(a)

A projectile is fired with initial velocity Vms⁻¹ at an angle of θ from a point O on horizontal ground. After 5 seconds it just passes over a 4m high wall that is 20 metres from the point of projection. Assume the acceleration due to gravity is 10ms^{-2} Assume the equations of displacement are $x = \text{Vt} \cos \theta$ and $y = \text{Vt} \sin \theta - 5t^2$.

(i) Find V and θ

- 2
- (ii) Find the time taken for the projectile to attain its maximum height.
- (iii) Find the range of the projectile.

1

2

- (b) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.
 - (i) Show that the equation of the chord PQ is (p+q)x 2y 2apq = 0
 - (ii) Show that the gradient of the tangent at P is p.
 - (iii) Prove that if the tangent at P is parallel to the normal at Q then
 - PQ passes through the focus S

- (i) Find the initial acceleration.
- (ii) Show that $v^2 = (x-2)^2$
- (iii) Find x as a function of t.

--End of Exam--

(1) C
$$\frac{3}{1}$$
 $\frac{3}{1}$ $\frac{3}{1}$ $\frac{3}{1}$

$$\frac{\cos |C_{\Lambda} + I|}{2} = \cos^2 k_{\Lambda}$$
(5) B
$$\frac{1}{2} \int \frac{dn}{\sqrt{9-x^2}}$$

(6) C
$$\frac{1}{2}V^2 = 32 - \frac{1}{2}x^2$$

 $x = -16x$
 $x = -16x$
 $x = 16x$
 $x = 16x$

$$S = +\pi^{2}$$

$$\frac{ds}{ds} = \frac{ds}{ds} \times \frac{ds}{ds}$$

$$= 88\pi \times 48$$

(9) A
$$x = \frac{\Gamma}{2y-\zeta} - 2$$
 $x+2 = \frac{5}{2y-\zeta}$
 $2y-\zeta = \frac{5}{x+2}$
 $2y = \frac{5}{x+2} + \zeta$
 $y = \frac{5}{2x+4} + 3$

(10) A $y = \zeta_{2x}$

Wuestion 12.

Ty Prove true for
$$n=k+1$$
.

RTP $5^{k+1} > 20(k+1)-1$.

RTP 5 > 20(k+1) -1.

1.e. Prove LHS-RHS>0

LHS-RHS =
$$5^{kH}$$
 -20(k+1) H

= 5^k . 5 -20k-20+1

> 5(20k-1) - 20k -19

= $100k-5-20k-19$

= $80k-24$

> 0 as when $k \ge 3$, $80k-24 \ge 216$

IN Blah.

b) 1)
$$P(\text{docs not rain for a week}) = (\frac{1}{3})$$
 $= \frac{1}{2187}$

ii)
$$P(sM) + P(MT) + P(TW) + P(WT) + P(TF) + P(FS)$$

= $i(\frac{2}{3})^2 \times (\frac{1}{3})^5 \times 6$
= $i\frac{8}{729}$

C)
$$u = s \cap x$$

$$\frac{du}{dx} = cos x$$

$$\frac{du}{dx} = cos x$$

$$\frac{du}{dx} = cos x + c$$

$$T = \begin{cases} 1 & 2 & 44 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{cases}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

LACE = LABC (L is alt. segment)

= 50

$$D: -1 \le \infty - 2 \le 1$$

$$1 \le \infty \le 3$$

$$R: -\frac{\pi}{2} \le \gamma \le \frac{\pi}{2}$$

(a)
$$\int_{0}^{2} \frac{dx}{4x^{2} + 20} = \frac{1}{4} \int_{0}^{2} \frac{dx}{x^{2} + 5}$$

$$= \frac{1}{4\sqrt{5}} \left[\frac{1}{4} - \frac{x}{\sqrt{5}} \right]_{0}^{2}$$

$$= \frac{1}{4\sqrt{5}} \left[\frac{2}{\sqrt{5}} \right]_{0}^{2}$$

(b) (i) LHS =
$$\frac{dT}{dt}$$
 $T = 20 + Ae^{-kt}$
= $-kAe^{-kt}$ = $-k(20 + Ae^{-kt} - 20)$
= $-k(T - 20)$
: LHS = RHS : $T = 20 + Ae^{-kt}$ is a soln.
of the equation

(ii) When
$$t=0$$
, $T=100$ when $t=15$, $T=70$

$$100 = 20 + A \Rightarrow A = 80$$

$$70 = 20 + 80 = -15k$$

$$e^{-15k} = \frac{5}{8} \Rightarrow k = -\frac{1}{15} \ln \left(\frac{5}{8}\right) = 0.031$$

(iii)
$$25 = 20 + 80e^{-0.031t}$$

 $e^{-0.031t} = \frac{5}{80} \implies t = \frac{1}{0.031} \ln \left(\frac{5}{80} \right)$
 $t = 88.5 \text{ minutes}$

(d) (i)
$$P(x) = x^4 + 5x^3 + 4x^2 - 8x - 8$$

 $P(-1) = 1 - 5 + 4 + 8 - 8$
 $= 0$: $(x+1)$ is a factor
$$P(-2) = 16 - 40 + 16 + 16 - 8$$

$$= 0$$
 : $(x+2)$ is a factor
Hence $(x+1)(x+2)$ is a factor

(ii)
$$(x^2 + 3x + 2) Q(x) = x^4 + 5x^3 + 4x^2 - 8x - 8$$

By inspection $Q(x) = x^2 + 2x - 4$

$$\frac{\sin \theta}{\cos \theta} = 2\sin \theta \cos \theta$$

$$\sin \theta = 0$$
 or $\cos \theta = \pm \frac{1}{\sqrt{2}}$ $\frac{\xi}{4^{1}} \frac{A^{1}}{c_{*}}$

$$... 0 = 0, T, 2T, \frac{T}{4}, \frac{3T}{4}, \frac{5T}{4}, \frac{7T}{4}$$

Question 14	
	.5
a) $\chi = Vt \cos \theta$	$y = V t sin \theta - 5t^2$
i) When n = 20,	
y = 4 \frac{1}{2} = 5	
t = 0	
20 = 5 V cos θ	4 = 5 V s in 0 - 125
4 = V co. 50	$129 = V \sin\theta$ (2)
$\frac{4 - V \cos \theta}{V = \frac{4}{\cos \theta}}$	5
CO & D	
Sub (1) into (2)	iii) Time of flight = 2 x 2.58 = 5.16
129 = tan 0	Range = 26.1 x 5.16 x cos 81°11' " = 20.64"
20 -1/129	_ = \(\frac{20.64}{}\).
$\theta = \tan\left(\frac{129}{20}\right)$	<u>'</u>
= 81°11!	
V = -4 cos 81°11	
ως 81 11	·
= 26.1 ms	
ii) Max height when	u¹ = 0
y1 = Vsin 8 - 10 t	
, ·	
$V \sin \theta = 10 t$ $t = V \sin \theta$	
10	
= 2.58 s.	

- , <u>A</u>

b) P(2apap²) Q(2aq,aq²)
$\frac{1}{1}M_{PQ} = \frac{ap^2 - aq}{2ap - 2aq}$
$= \frac{a(p+q)(p-q)}{2a(p-q)}$
= p+q/
Equation of PQ: y-ap2 = p+q (n-2ap)
U
$2y - 2ap^2 = (p+q)n - 2ap^2 - 2apq^2$
(p+q)x-2y-20pq = 0
ii) $\chi^2 = 4ay$ iii) If tangent at P is parallel to
$y = n^2$ normal at Q then gradient of normal at Q is p and gradient $dy = \frac{2\pi}{4\pi}$ of tangent at Q is $\frac{-1}{2\pi}$.
$\frac{dy}{dx} = \frac{2\pi}{4\pi} \qquad \text{of fangent at } Q \text{ is } \frac{-1}{P}.$
$=\frac{\kappa}{2a} \qquad :: q = -\frac{1}{\rho}$
when r= 2ap
$\frac{dy}{dn} = \frac{2a}{2a} \qquad (p+q)x - 2y + 2a = 0$
= p. 1. when n=0
-2y + 2a = 0 $y = a$
-: PQ passes through (0,a)
2. I de passes ipijongri () 1)

c)	
i) $a = \pi - 2$	
when t=0 , n=0	
: a = -2	
ii) $a = \frac{d}{dn} \left(\frac{1}{2} \cdot V^2 \right)$	
dn (2.V)	
$\frac{d}{dx}\left(\frac{1}{2}\sqrt{2}\right) = x - 2$	
dn (2 V	
$\frac{1}{2}v^2 = \left(n-2\right) dx$	
$v^2 = 2 \int \pi - 2 dn$	
J ,	
$= \chi'(n-2) + C$	
×	
When $n=0$, $v=2$	
4 = 4 + C	
C = 0	
$\therefore v^2 = (n-2)^2$	
iii) when $n = 0$ $v = 2$ $t = -\ln(2-\pi) + C$	
$\therefore V = -(n-2) \text{when } t = 0, n = 0$	
$V = 2 - \chi \qquad D = -\ln 2 + C$	
$\frac{dn}{dt} = 2 - x \qquad C = \ln 2$	
2	
$\frac{1 \ln 2 - t}{x} = \frac{\ln (2 - x)}{\ln 2 - t}$	
$= 2 - 2e^{-t}$] .