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Instructions
’ 1 T
All seven questions may be attempted. / —F=—=—dz=sin"">, 4>0, —a<z<a
Vo2 —p2 . a

All seven questions are of equal value.

All necessary working must be shown. 1
Mazrks may not be awarded for careless or badly arranged work. / —*——m dr =In (x + A z2 — a2) , >0 >0
Approved calculators and templates may be.used. 1
A list of standard integrals is provided at the end of the examination paper. —_— g CRNT)
‘ mda: 1n(z+\/a: +a>
Collection ) NOTE: lnz =1log,z, >0

Write your candidate number clearly on each bookiet.

Hand in the seven questions in a single well-ordered pile.

Hand in a booklet for each question, even if it has not been attempted.

If you use a second booklet for a question, place it inside the first.

Kéep the printed examination paper and bring it to your next Mathematics lesson.

Checklist

SGS booklets: 7 per boy. A total of 1000 booklets should be sufficient.
Candidature: 120 boys.

Examiner
JNGC
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QUESTION ONE (12 marks) Use a separate writing booklet. Marks QUESTFON THREE (12 marks) Use a separate writing booklet. Marks

how that the equation of the normal to the parabola z = 2at, y = at® at the point |3
1Y

ind th t value of tan™ (—+/3). 1
(2) Find the exact value of tan™(—+/3) where t = T is given by @ + Ty — 2aT + aT®.

(b) Differentiate ** sin z. - @

ﬁ Find the exact value of / : cos? ¢ dz.
o

{d) Find the acute angle, correct to the nearest minute, bebween the lines
z+y=4andz—y=1

{e) Given A(2,1) and B(T7,3), find the coordinates of the point C' which divides the
interval AB externally in the ratic 2 : 3.

(f) Use the substitution v =z + 1 to find / z(z +1)% dz.
QUESTION TWO (12 marks) Use a separate writing booklet. Marks
1 In the diagram above, the two circles intersect at 4 and B, and CAD, CBE, CPK
. 3 ? 3 3 H
(a) Solve o 2. and DK'E are straight lines.
‘ i) Give a reason why LAPC = /ABC. L
w{f Find the value of h if z — 2 is a factor of P(z) = 3¢ — 2ha + 7. N © why
¥/ (i) Hence, or otherwise, show that ADK P is a cyclic quadrilateral.

., . . 1 T
(¢) Consider the function f(z) = 3cos™ P (c) A cup of hot milk at temperature T° Celsius loses heat when placed in & cooler envi-

ronment. It cools according to the law given by the differential equation
(i) Evaluate £{0). :
dr
(ii) State the domain and range of y = f(x). @ ~k(T - S)
(iif) Sketch the graph of f{z). where ¢ is the time elapsed in minutes, S is the temperature of the environment in
degrees Celsiug and k is a positive constant

{d)/A particle executes simple harmonic motion about the origin with period 7" seconds |3 ) ) _ N ) ‘
aml-i) amplitude 4 Centin}i)etpeﬁ Find its maximum speed in terms of T and A. (1) Show that T = + Ae™ where A is 4 constant, is a solution of the differential
. équation.

(i) (@) A cup of milk at 80° C is placed in an environment at 20° C, and after ten
minutes it has cooled to 40° C. Find the exact value of k.

[e<]

(f) Find the temperature of the milk after five more minutes have elapsed. Give
your answer rounded to the nearest tenth of a degree.

-]

Exam continues next page ... Exam continues overleaf ...




SGS Trial 2006 ... ......... Form VI Mathematics Extension 1 .............. Page 4

QUESTION FOUR (12 marks) Use a separate writing booklet. Marks

,
/

The diagram above shows a 5 metre ladder leaning against a wall on level ground.
The base of the ladder is sliding away from the wall at 2 centimeétres per second. Find
the rate at which the angle of inclination ¢ is changing when the foot of the ladder is
3 metres from the wall:

) 9 10
{b) Fjxd the coefficient of &? in the expansion of (‘xz + E) . :

(i} Taking about one:third of a page and on the same set of axes, draw sketches of
y=Inz and y =sime for 0 < z < 2.

(if} On your diagram, indicate the root o of the equation Inz — sinz = 0.
3
(iii) Show that g <a< z“.

(iv) Use Newton’s method once, with first approximation z; = 3%, to find a better
approximation for . Give your answer correct to two decimal places.

Exam continues next page ...
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QUESTION FIVE (12 marks) Use a separate writing booklet.

(a)

Marks

C

D -

In the diagram above, ABD and AED are isosceles triangles with AD = BD
and BD bisects LABC. Let LABD = /CBD =8 and let /DCB = qa.

(i) Show that ZEAB = q, giving reasons.
(if) Hence show that AABE || ACBD.
(i) Deduce that AE®* = BE x.CD.

@ (i) By squaring both sides, show that 2n + 3 > 21/(n+ 1)(n + 2) for n > Q.
(

i) Prove by mathematical induction that -

1 1 1
l+ﬁ+$+'”+'\/——ﬁ'>2‘(m—l)

for all positive integer values of n.

= AF,

[ [=] [e] [F][e]

Exam continues overleaf ...
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QUESTION SIX (12 marks) Use a separate writing booklet. Marks
!
By using the substitution z = tan g, evaluate / ——dz.
o (14 x2)3

~ (b) When (3 + 2z)" is expanded as a polynomial in z, the coefficients of #° and z® are
equal. Find the value of n.

(c) y v

Nz ,,

ol . x

In the diagram above, a particle is projected from the origin O with speed ¥/ me-

tres per second at an angle of elevation @. At the same instant, another particle
is projected from the point A, h metres directly above O, with speed V metres
per second at an angle of elevation B, where f<a. The particles move freely un-
der gravity in the same plane of motion and collide 7' seconds after projection.

You may assume that the horizontal and vertical components of displacement at time
t seconds of the particle projected from O are given by
To = Utcosa and yo = Utsine — %gt2 respectively.

You may also assume that the horizontal and vertical components of displacement at
time ¢ seconds of the particle projected from A are given by

za=VicosfBand ys=h + Visinf — %gt? respectively.

Show that
hcos B

- Usin(a ~ 8)°

Exam continues next page ...

[4]
[4]
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QUESTION SEVEN (12 marks) Use a separate writing booklet.

(a) (i) Use the binomial theorem to find & simplified expansion for
(l +;;)10n €T (1 _ x)lOn’

where n is a positive integer.

30 30 30
(2 (D) 3)
ef— e %

et +e’

(i) Show that f(z) is an odd function.

(i) Hence evaluate

(b) Consider the function Fle) =

(if) Examine the behaviour of f(z) as £ — oo and as z — —co.
(i) Show that the curve is increasing for all values of z.
(iv} Sketch the curve y = f(e).

T _ g

(v} Xk is a positive constant, show that the area bounded by the curvey = °

and the lines z =0, . = k and y =1 is always less than In 2.

END OF EXAMINATION
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QUESTION FIVE
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